x^2-3x+11=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2-3x+11=0

    Решение

    Вы ввели [src]
     2               
    x  - 3*x + 11 = 0
    x23x+11=0x^{2} - 3 x + 11 = 0
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=3b = -3
    c=11c = 11
    , то
    D = b^2 - 4 * a * c = 

    (-3)^2 - 4 * (1) * (11) = -35

    Т.к. D < 0, то уравнение
    не имеет вещественных корней,
    но комплексные корни имеются.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=32+35i2x_{1} = \frac{3}{2} + \frac{\sqrt{35} i}{2}
    Упростить
    x2=3235i2x_{2} = \frac{3}{2} - \frac{\sqrt{35} i}{2}
    Упростить
    График
    -2.0-1.00.01.02.03.04.05.06.0020
    Быстрый ответ [src]
                 ____
         3   I*\/ 35 
    x1 = - - --------
         2      2    
    x1=3235i2x_{1} = \frac{3}{2} - \frac{\sqrt{35} i}{2}
                 ____
         3   I*\/ 35 
    x2 = - + --------
         2      2    
    x2=32+35i2x_{2} = \frac{3}{2} + \frac{\sqrt{35} i}{2}
    Сумма и произведение корней [src]
    сумма
                ____           ____
        3   I*\/ 35    3   I*\/ 35 
    0 + - - -------- + - + --------
        2      2       2      2    
    (0+(3235i2))+(32+35i2)\left(0 + \left(\frac{3}{2} - \frac{\sqrt{35} i}{2}\right)\right) + \left(\frac{3}{2} + \frac{\sqrt{35} i}{2}\right)
    =
    3
    33
    произведение
      /        ____\ /        ____\
      |3   I*\/ 35 | |3   I*\/ 35 |
    1*|- - --------|*|- + --------|
      \2      2    / \2      2    /
    1(3235i2)(32+35i2)1 \cdot \left(\frac{3}{2} - \frac{\sqrt{35} i}{2}\right) \left(\frac{3}{2} + \frac{\sqrt{35} i}{2}\right)
    =
    11
    1111
    Теорема Виета
    это приведённое квадратное уравнение
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=3p = -3
    q=caq = \frac{c}{a}
    q=11q = 11
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=3x_{1} + x_{2} = 3
    x1x2=11x_{1} x_{2} = 11
    Численный ответ [src]
    x1 = 1.5 - 2.95803989154981*i
    x2 = 1.5 + 2.95803989154981*i
    График
    x^2-3x+11=0 (уравнение) /media/krcore-image-pods/hash/equation/a/b2/0061161c1c23a03aa8b7659db2a98.png