x^2-1=4 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2-1=4

    Решение

    Вы ввели [src]
     2        
    x  - 1 = 4
    x21=4x^{2} - 1 = 4
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    x21=4x^{2} - 1 = 4
    в
    x214=0x^{2} - 1 - 4 = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=0b = 0
    c=5c = -5
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (-5) = 20

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=5x_{1} = \sqrt{5}
    x2=5x_{2} = - \sqrt{5}
    График
    05-15-10-51015-200200
    Быстрый ответ [src]
            ___
    x1 = -\/ 5 
    x1=5x_{1} = - \sqrt{5}
           ___
    x2 = \/ 5 
    x2=5x_{2} = \sqrt{5}
    Численный ответ [src]
    x1 = 2.23606797750000
    x2 = -2.23606797750000
    График
    x^2-1=4 (уравнение) /media/krcore-image-pods/eb03/733e/2ccd/2593/im.png