x^2-x+a=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2-x+a=0

    Решение

    Вы ввели [src]
     2            
    x  - x + a = 0
    a+(x2x)=0a + \left(x^{2} - x\right) = 0
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=1b = -1
    c=ac = a
    , то
    D = b^2 - 4 * a * c = 

    (-1)^2 - 4 * (1) * (a) = 1 - 4*a

    Уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=14a2+12x_{1} = \frac{\sqrt{1 - 4 a}}{2} + \frac{1}{2}
    Упростить
    x2=1214a2x_{2} = \frac{1}{2} - \frac{\sqrt{1 - 4 a}}{2}
    Упростить
    График
    Быстрый ответ [src]
                ____________________________                                          ____________________________                                  
             4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\     4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\
             \/  (1 - 4*re(a))  + 16*im (a) *cos|----------------------------|   I*\/  (1 - 4*re(a))  + 16*im (a) *sin|----------------------------|
         1                                      \             2              /                                        \             2              /
    x1 = - - ----------------------------------------------------------------- - -------------------------------------------------------------------
         2                                   2                                                                    2                                 
    x1=i(14re(a))2+16(im(a))24sin(atan2(4im(a),14re(a))2)2(14re(a))2+16(im(a))24cos(atan2(4im(a),14re(a))2)2+12x_{1} = - \frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} - \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}
                ____________________________                                          ____________________________                                  
             4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\     4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\
             \/  (1 - 4*re(a))  + 16*im (a) *cos|----------------------------|   I*\/  (1 - 4*re(a))  + 16*im (a) *sin|----------------------------|
         1                                      \             2              /                                        \             2              /
    x2 = - + ----------------------------------------------------------------- + -------------------------------------------------------------------
         2                                   2                                                                    2                                 
    x2=i(14re(a))2+16(im(a))24sin(atan2(4im(a),14re(a))2)2+(14re(a))2+16(im(a))24cos(atan2(4im(a),14re(a))2)2+12x_{2} = \frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}
    Сумма и произведение корней [src]
    сумма
           ____________________________                                          ____________________________                                            ____________________________                                          ____________________________                                  
        4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\     4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\       4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\     4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\
        \/  (1 - 4*re(a))  + 16*im (a) *cos|----------------------------|   I*\/  (1 - 4*re(a))  + 16*im (a) *sin|----------------------------|       \/  (1 - 4*re(a))  + 16*im (a) *cos|----------------------------|   I*\/  (1 - 4*re(a))  + 16*im (a) *sin|----------------------------|
    1                                      \             2              /                                        \             2              /   1                                      \             2              /                                        \             2              /
    - - ----------------------------------------------------------------- - ------------------------------------------------------------------- + - + ----------------------------------------------------------------- + -------------------------------------------------------------------
    2                                   2                                                                    2                                    2                                   2                                                                    2                                 
    (i(14re(a))2+16(im(a))24sin(atan2(4im(a),14re(a))2)2(14re(a))2+16(im(a))24cos(atan2(4im(a),14re(a))2)2+12)+(i(14re(a))2+16(im(a))24sin(atan2(4im(a),14re(a))2)2+(14re(a))2+16(im(a))24cos(atan2(4im(a),14re(a))2)2+12)\left(- \frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} - \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}\right) + \left(\frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}\right)
    =
    1
    11
    произведение
    /       ____________________________                                          ____________________________                                  \ /       ____________________________                                          ____________________________                                  \
    |    4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\     4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\| |    4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\     4 /              2        2        /atan2(-4*im(a), 1 - 4*re(a))\|
    |    \/  (1 - 4*re(a))  + 16*im (a) *cos|----------------------------|   I*\/  (1 - 4*re(a))  + 16*im (a) *sin|----------------------------|| |    \/  (1 - 4*re(a))  + 16*im (a) *cos|----------------------------|   I*\/  (1 - 4*re(a))  + 16*im (a) *sin|----------------------------||
    |1                                      \             2              /                                        \             2              /| |1                                      \             2              /                                        \             2              /|
    |- - ----------------------------------------------------------------- - -------------------------------------------------------------------|*|- + ----------------------------------------------------------------- + -------------------------------------------------------------------|
    \2                                   2                                                                    2                                 / \2                                   2                                                                    2                                 /
    (i(14re(a))2+16(im(a))24sin(atan2(4im(a),14re(a))2)2(14re(a))2+16(im(a))24cos(atan2(4im(a),14re(a))2)2+12)(i(14re(a))2+16(im(a))24sin(atan2(4im(a),14re(a))2)2+(14re(a))2+16(im(a))24cos(atan2(4im(a),14re(a))2)2+12)\left(- \frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} - \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}\right) \left(\frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}\right)
    =
    I*im(a) + re(a)
    re(a)+iim(a)\operatorname{re}{\left(a\right)} + i \operatorname{im}{\left(a\right)}
    Теорема Виета
    это приведённое квадратное уравнение
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=1p = -1
    q=caq = \frac{c}{a}
    q=aq = a
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=1x_{1} + x_{2} = 1
    x1x2=ax_{1} x_{2} = a