____________________________ ____________________________
4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\ 4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\
\/ (1 - 4*re(a)) + 16*im (a) *cos|----------------------------| I*\/ (1 - 4*re(a)) + 16*im (a) *sin|----------------------------|
1 \ 2 / \ 2 /
x1 = - - ----------------------------------------------------------------- - -------------------------------------------------------------------
2 2 2
$$x_{1} = - \frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} - \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}$$
____________________________ ____________________________
4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\ 4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\
\/ (1 - 4*re(a)) + 16*im (a) *cos|----------------------------| I*\/ (1 - 4*re(a)) + 16*im (a) *sin|----------------------------|
1 \ 2 / \ 2 /
x2 = - + ----------------------------------------------------------------- + -------------------------------------------------------------------
2 2 2
$$x_{2} = \frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}$$
Сумма и произведение корней
[src] ____________________________ ____________________________ ____________________________ ____________________________
4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\ 4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\ 4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\ 4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\
\/ (1 - 4*re(a)) + 16*im (a) *cos|----------------------------| I*\/ (1 - 4*re(a)) + 16*im (a) *sin|----------------------------| \/ (1 - 4*re(a)) + 16*im (a) *cos|----------------------------| I*\/ (1 - 4*re(a)) + 16*im (a) *sin|----------------------------|
1 \ 2 / \ 2 / 1 \ 2 / \ 2 /
- - ----------------------------------------------------------------- - ------------------------------------------------------------------- + - + ----------------------------------------------------------------- + -------------------------------------------------------------------
2 2 2 2 2 2
$$\left(- \frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} - \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}\right) + \left(\frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}\right)$$
/ ____________________________ ____________________________ \ / ____________________________ ____________________________ \
| 4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\ 4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\| | 4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\ 4 / 2 2 /atan2(-4*im(a), 1 - 4*re(a))\|
| \/ (1 - 4*re(a)) + 16*im (a) *cos|----------------------------| I*\/ (1 - 4*re(a)) + 16*im (a) *sin|----------------------------|| | \/ (1 - 4*re(a)) + 16*im (a) *cos|----------------------------| I*\/ (1 - 4*re(a)) + 16*im (a) *sin|----------------------------||
|1 \ 2 / \ 2 /| |1 \ 2 / \ 2 /|
|- - ----------------------------------------------------------------- - -------------------------------------------------------------------|*|- + ----------------------------------------------------------------- + -------------------------------------------------------------------|
\2 2 2 / \2 2 2 /
$$\left(- \frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} - \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}\right) \left(\frac{i \sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{\sqrt[4]{\left(1 - 4 \operatorname{re}{\left(a\right)}\right)^{2} + 16 \left(\operatorname{im}{\left(a\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 4 \operatorname{im}{\left(a\right)},1 - 4 \operatorname{re}{\left(a\right)} \right)}}{2} \right)}}{2} + \frac{1}{2}\right)$$
$$\operatorname{re}{\left(a\right)} + i \operatorname{im}{\left(a\right)}$$