х^2+9х-11=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: х^2+9х-11=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 1 a = 1 a = 1 b = 9 b = 9 b = 9 c = − 11 c = -11 c = − 11 , тоD = b^2 - 4 * a * c = (9)^2 - 4 * (1) * (-11) = 125 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = − 9 2 + 5 5 2 x_{1} = - \frac{9}{2} + \frac{5 \sqrt{5}}{2} x 1 = − 2 9 + 2 5 5 Упростить x 2 = − 5 5 2 − 9 2 x_{2} = - \frac{5 \sqrt{5}}{2} - \frac{9}{2} x 2 = − 2 5 5 − 2 9 Упростить
График
-12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 -250 250
___
9 5*\/ 5
x1 = - - + -------
2 2 x 1 = − 9 2 + 5 5 2 x_{1} = - \frac{9}{2} + \frac{5 \sqrt{5}}{2} x 1 = − 2 9 + 2 5 5 ___
9 5*\/ 5
x2 = - - - -------
2 2 x 2 = − 5 5 2 − 9 2 x_{2} = - \frac{5 \sqrt{5}}{2} - \frac{9}{2} x 2 = − 2 5 5 − 2 9
Сумма и произведение корней
[src] ___ ___
9 5*\/ 5 9 5*\/ 5
0 + - - + ------- + - - - -------
2 2 2 2 ( − 5 5 2 − 9 2 ) − ( 9 2 − 5 5 2 ) \left(- \frac{5 \sqrt{5}}{2} - \frac{9}{2}\right) - \left(\frac{9}{2} - \frac{5 \sqrt{5}}{2}\right) ( − 2 5 5 − 2 9 ) − ( 2 9 − 2 5 5 ) / ___\ / ___\
| 9 5*\/ 5 | | 9 5*\/ 5 |
1*|- - + -------|*|- - - -------|
\ 2 2 / \ 2 2 / 1 ( − 9 2 + 5 5 2 ) ( − 5 5 2 − 9 2 ) 1 \left(- \frac{9}{2} + \frac{5 \sqrt{5}}{2}\right) \left(- \frac{5 \sqrt{5}}{2} - \frac{9}{2}\right) 1 ( − 2 9 + 2 5 5 ) ( − 2 5 5 − 2 9 )
Теорема Виета
это приведённое квадратное уравнениеp x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 9 p = 9 p = 9 q = c a q = \frac{c}{a} q = a c q = − 11 q = -11 q = − 11 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = − 9 x_{1} + x_{2} = -9 x 1 + x 2 = − 9 x 1 x 2 = − 11 x_{1} x_{2} = -11 x 1 x 2 = − 11