x^2+12=8x (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: x^2+12=8x
Решение
Подробное решение
Перенесём правую часть уравнения в
левую часть уравнения со знаком минус.
Уравнение превратится из
$$x^{2} + 12 = 8 x$$
в
$$- 8 x + \left(x^{2} + 12\right) = 0$$
Это уравнение вида
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
$$a = 1$$
$$b = -8$$
$$c = 12$$
, то
D = b^2 - 4 * a * c =
(-8)^2 - 4 * (1) * (12) = 16
Т.к. D > 0, то уравнение имеет два корня.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
или
$$x_{1} = 6$$
Упростить
$$x_{2} = 2$$
Упростить
Сумма и произведение корней
[src]$$\left(0 + 2\right) + 6$$
Теорема Виета
это приведённое квадратное уравнение
$$p x + q + x^{2} = 0$$
где
$$p = \frac{b}{a}$$
$$p = -8$$
$$q = \frac{c}{a}$$
$$q = 12$$
Формулы Виета
$$x_{1} + x_{2} = - p$$
$$x_{1} x_{2} = q$$
$$x_{1} + x_{2} = 8$$
$$x_{1} x_{2} = 12$$