x^2 + 17 = 0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2 + 17 = 0

    Решение

    Вы ввели [src]
     2         
    x  + 17 = 0
    x2+17=0x^{2} + 17 = 0
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=0b = 0
    c=17c = 17
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (17) = -68

    Т.к. D < 0, то уравнение
    не имеет вещественных корней,
    но комплексные корни имеются.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=17ix_{1} = \sqrt{17} i
    x2=17ix_{2} = - \sqrt{17} i
    График
    -1.5-1.0-0.50.00.51.01.52.0020
    Быстрый ответ [src]
              ____
    x1 = -I*\/ 17 
    x1=17ix_{1} = - \sqrt{17} i
             ____
    x2 = I*\/ 17 
    x2=17ix_{2} = \sqrt{17} i
    Численный ответ [src]
    x1 = -4.12310562561766*i
    x2 = 4.12310562561766*i
    График
    x^2 + 17 = 0 (уравнение) /media/krcore-image-pods/hash/equation/2/d2/3e25f818e0e09baf9490b56af04ce.png