x^2=7x+8 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2=7x+8

    Решение

    Вы ввели [src]
     2          
    x  = 7*x + 8
    x2=7x+8x^{2} = 7 x + 8
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    x2=7x+8x^{2} = 7 x + 8
    в
    x2(7x+8)=0x^{2} - \left(7 x + 8\right) = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=7b = -7
    c=8c = -8
    , то
    D = b^2 - 4 * a * c = 

    (-7)^2 - 4 * (1) * (-8) = 81

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=8x_{1} = 8
    Упростить
    x2=1x_{2} = -1
    Упростить
    График
    -10.0-7.5-5.0-2.50.02.55.07.510.012.515.017.5-500500
    Быстрый ответ [src]
    x1 = -1
    x1=1x_{1} = -1
    x2 = 8
    x2=8x_{2} = 8
    Сумма и произведение корней [src]
    сумма
    0 - 1 + 8
    (1+0)+8\left(-1 + 0\right) + 8
    =
    7
    77
    произведение
    1*-1*8
    1(1)81 \left(-1\right) 8
    =
    -8
    8-8
    Теорема Виета
    это приведённое квадратное уравнение
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=7p = -7
    q=caq = \frac{c}{a}
    q=8q = -8
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=7x_{1} + x_{2} = 7
    x1x2=8x_{1} x_{2} = -8
    Численный ответ [src]
    x1 = 8.0
    x2 = -1.0
    График
    x^2=7x+8 (уравнение) /media/krcore-image-pods/hash/equation/b/9b/e025fc0e22229b0f58d2f78d14f9b.png