х^2=-49 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: х^2=-49

    Решение

    Вы ввели [src]
     2      
    x  = -49
    x2=49x^{2} = -49
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    x2=49x^{2} = -49
    в
    x2+49=0x^{2} + 49 = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=0b = 0
    c=49c = 49
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (49) = -196

    Т.к. D < 0, то уравнение
    не имеет вещественных корней,
    но комплексные корни имеются.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=7ix_{1} = 7 i
    Упростить
    x2=7ix_{2} = - 7 i
    Упростить
    График
    -15.0-12.5-10.0-7.5-5.0-2.50.02.55.07.515.010.012.5-200200
    Быстрый ответ [src]
    x1 = -7*I
    x1=7ix_{1} = - 7 i
    x2 = 7*I
    x2=7ix_{2} = 7 i
    Сумма и произведение корней [src]
    сумма
    0 - 7*I + 7*I
    (07i)+7i\left(0 - 7 i\right) + 7 i
    =
    0
    00
    произведение
    1*-7*I*7*I
    7i1(7i)7 i 1 \left(- 7 i\right)
    =
    49
    4949
    Теорема Виета
    это приведённое квадратное уравнение
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=0p = 0
    q=caq = \frac{c}{a}
    q=49q = 49
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=0x_{1} + x_{2} = 0
    x1x2=49x_{1} x_{2} = 49
    Численный ответ [src]
    x1 = 7.0*i
    x2 = -7.0*i
    График
    х^2=-49 (уравнение) /media/krcore-image-pods/hash/equation/1/1b/c2975b054db3f2f20f995ed227110.png