x^2=0,81 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: x^2=0,81
Решение
Подробное решение
Перенесём правую часть уравнения в левую часть уравнения со знаком минус. Уравнение превратится изx 2 = 81 100 x^{2} = \frac{81}{100} x 2 = 100 81 вx 2 − 81 100 = 0 x^{2} - \frac{81}{100} = 0 x 2 − 100 81 = 0 Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 1 a = 1 a = 1 b = 0 b = 0 b = 0 c = − 81 100 c = - \frac{81}{100} c = − 100 81 , тоD = b^2 - 4 * a * c = (0)^2 - 4 * (1) * (-81/100) = 81/25 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 9 10 x_{1} = \frac{9}{10} x 1 = 10 9 Упростить x 2 = − 9 10 x_{2} = - \frac{9}{10} x 2 = − 10 9 Упростить x 1 = − 9 10 x_{1} = - \frac{9}{10} x 1 = − 10 9 x 2 = 9 10 x_{2} = \frac{9}{10} x 2 = 10 9
Сумма и произведение корней
[src] ( − 9 10 + 0 ) + 9 10 \left(- \frac{9}{10} + 0\right) + \frac{9}{10} ( − 10 9 + 0 ) + 10 9 1 ( − 9 10 ) 9 10 1 \left(- \frac{9}{10}\right) \frac{9}{10} 1 ( − 10 9 ) 10 9 − 81 100 - \frac{81}{100} − 100 81
Теорема Виета
это приведённое квадратное уравнениеp x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 0 p = 0 p = 0 q = c a q = \frac{c}{a} q = a c q = − 81 100 q = - \frac{81}{100} q = − 100 81 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 0 x_{1} + x_{2} = 0 x 1 + x 2 = 0 x 1 x 2 = − 81 100 x_{1} x_{2} = - \frac{81}{100} x 1 x 2 = − 100 81