x^2=121 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2=121

    Решение

    Вы ввели [src]
     2      
    x  = 121
    x2=121x^{2} = 121
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    x2=121x^{2} = 121
    в
    x2121=0x^{2} - 121 = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=0b = 0
    c=121c = -121
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (-121) = 484

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=11x_{1} = 11
    Упростить
    x2=11x_{2} = -11
    Упростить
    График
    05-30-25-20-15-10-510152025300500
    Быстрый ответ [src]
    x1 = -11
    x1=11x_{1} = -11
    x2 = 11
    x2=11x_{2} = 11
    Сумма и произведение корней [src]
    сумма
    0 - 11 + 11
    (11+0)+11\left(-11 + 0\right) + 11
    =
    0
    00
    произведение
    1*-11*11
    1(11)111 \left(-11\right) 11
    =
    -121
    121-121
    Теорема Виета
    это приведённое квадратное уравнение
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=0p = 0
    q=caq = \frac{c}{a}
    q=121q = -121
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=0x_{1} + x_{2} = 0
    x1x2=121x_{1} x_{2} = -121
    Численный ответ [src]
    x1 = -11.0
    x2 = 11.0
    График
    x^2=121 (уравнение) /media/krcore-image-pods/hash/equation/b/b1/0a886d220566e8c8460c5013d824f.png