x^2=125 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: x^2=125
Решение
Подробное решение
Перенесём правую часть уравнения в левую часть уравнения со знаком минус. Уравнение превратится изx 2 = 125 x^{2} = 125 x 2 = 125 вx 2 − 125 = 0 x^{2} - 125 = 0 x 2 − 125 = 0 Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 1 a = 1 a = 1 b = 0 b = 0 b = 0 c = − 125 c = -125 c = − 125 , тоD = b^2 - 4 * a * c = (0)^2 - 4 * (1) * (-125) = 500 Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 5 5 x_{1} = 5 \sqrt{5} x 1 = 5 5 Упростить x 2 = − 5 5 x_{2} = - 5 \sqrt{5} x 2 = − 5 5 Упростить
График
0 5 -30 -25 -20 -15 -10 -5 10 15 20 25 30 0 500
x 1 = − 5 5 x_{1} = - 5 \sqrt{5} x 1 = − 5 5 x 2 = 5 5 x_{2} = 5 \sqrt{5} x 2 = 5 5
Сумма и произведение корней
[src] ___ ___
0 - 5*\/ 5 + 5*\/ 5 ( − 5 5 + 0 ) + 5 5 \left(- 5 \sqrt{5} + 0\right) + 5 \sqrt{5} ( − 5 5 + 0 ) + 5 5 ___ ___
1*-5*\/ 5 *5*\/ 5 5 5 ⋅ 1 ( − 5 5 ) 5 \sqrt{5} \cdot 1 \left(- 5 \sqrt{5}\right) 5 5 ⋅ 1 ( − 5 5 )
Теорема Виета
это приведённое квадратное уравнениеp x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 0 p = 0 p = 0 q = c a q = \frac{c}{a} q = a c q = − 125 q = -125 q = − 125 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 0 x_{1} + x_{2} = 0 x 1 + x 2 = 0 x 1 x 2 = − 125 x_{1} x_{2} = -125 x 1 x 2 = − 125