далее, преобразуем x41=1 Т.к. степень в ур-нии равна = -4 - содержит чётное число -4 в числителе, то ур-ние будет иметь два действительных корня. Извлечём корень -4-й степени из обеих частей ур-ния: Получим: 4(1x+0)411=411 4(1x+0)411=411(−1) или x=1 x=−1 Получим ответ: x = 1 Получим ответ: x = -1 или x1=−1 x2=1
Остальные 2 корня(ей) являются комплексными. сделаем замену: z=x тогда ур-ние будет таким: z41=1 Любое комплексное число можно представить так: z=reip подставляем в уравнение r4e−4ip=1 где r=1 - модуль комплексного числа Подставляем r: e−4ip=1 Используя формулу Эйлера, найдём корни для p −isin(4p)+cos(4p)=1 значит cos(4p)=1 и −sin(4p)=0 тогда p=−2πN где N=0,1,2,3,... Перебирая значения N и подставив p в формулу для z Значит, решением будет для z: z1=−1 z2=1 z3=−i z4=i делаем обратную замену z=x x=z