x^7+128=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^7+128=0

    Решение

    Вы ввели [src]
     7          
    x  + 128 = 0
    x7+128=0x^{7} + 128 = 0
    Подробное решение
    Дано уравнение
    x7+128=0x^{7} + 128 = 0
    Т.к. степень в ур-нии равна = 7 - не содержит чётного числа в числителе, то
    ур-ние будет иметь один действительный корень.
    Извлечём корень 7-й степени из обеих частей ур-ния:
    Получим:
    x77=1287\sqrt[7]{x^{7}} = \sqrt[7]{-128}
    или
    x=217x = 2 \sqrt[7]{-1}
    Раскрываем скобочки в правой части ур-ния
    x = -2*1^1/7

    Получим ответ: x = 2*(-1)^(1/7)

    Остальные 6 корня(ей) являются комплексными.
    сделаем замену:
    z=xz = x
    тогда ур-ние будет таким:
    z7=128z^{7} = -128
    Любое комплексное число можно представить так:
    z=reipz = r e^{i p}
    подставляем в уравнение
    r7e7ip=128r^{7} e^{7 i p} = -128
    где
    r=2r = 2
    - модуль комплексного числа
    Подставляем r:
    e7ip=1e^{7 i p} = -1
    Используя формулу Эйлера, найдём корни для p
    isin(7p)+cos(7p)=1i \sin{\left(7 p \right)} + \cos{\left(7 p \right)} = -1
    значит
    cos(7p)=1\cos{\left(7 p \right)} = -1
    и
    sin(7p)=0\sin{\left(7 p \right)} = 0
    тогда
    p=2πN7+π7p = \frac{2 \pi N}{7} + \frac{\pi}{7}
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    z1=2cos(π7)+2isin(π7)z_{1} = 2 \cos{\left(\frac{\pi}{7} \right)} + 2 i \sin{\left(\frac{\pi}{7} \right)}
    z2=2cos2(π7)2sin2(π7)z_{2} = - 2 \cos^{2}{\left(\frac{\pi}{7} \right)} - 2 \sin^{2}{\left(\frac{\pi}{7} \right)}
    z3=2cos2(π7)+2sin2(π7)4isin(π7)cos(π7)z_{3} = - 2 \cos^{2}{\left(\frac{\pi}{7} \right)} + 2 \sin^{2}{\left(\frac{\pi}{7} \right)} - 4 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}
    z4=2sin(π7)sin(2π7)+2cos(π7)cos(2π7)+2isin(π7)cos(2π7)+2isin(2π7)cos(π7)z_{4} = - 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{2 \pi}{7} \right)} + 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + 2 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + 2 i \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}
    z5=2sin(π7)sin(2π7)+2cos(π7)cos(2π7)2isin(2π7)cos(π7)+2isin(π7)cos(2π7)z_{5} = 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{2 \pi}{7} \right)} + 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} - 2 i \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} + 2 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)}
    z6=2sin(π7)sin(3π7)2cos(π7)cos(3π7)2isin(π7)cos(3π7)+2isin(3π7)cos(π7)z_{6} = - 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{3 \pi}{7} \right)} - 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} - 2 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 i \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}
    z7=2cos(π7)cos(3π7)+2sin(π7)sin(3π7)2isin(3π7)cos(π7)2isin(π7)cos(3π7)z_{7} = - 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{3 \pi}{7} \right)} - 2 i \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} - 2 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)}
    делаем обратную замену
    z=xz = x
    x=zx = z

    Тогда, окончательный ответ:
    x1=2cos(π7)+2isin(π7)x_{1} = 2 \cos{\left(\frac{\pi}{7} \right)} + 2 i \sin{\left(\frac{\pi}{7} \right)}
    x2=2cos2(π7)2sin2(π7)x_{2} = - 2 \cos^{2}{\left(\frac{\pi}{7} \right)} - 2 \sin^{2}{\left(\frac{\pi}{7} \right)}
    x3=2cos2(π7)+2sin2(π7)4isin(π7)cos(π7)x_{3} = - 2 \cos^{2}{\left(\frac{\pi}{7} \right)} + 2 \sin^{2}{\left(\frac{\pi}{7} \right)} - 4 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}
    x4=2sin(π7)sin(2π7)+2cos(π7)cos(2π7)+2isin(π7)cos(2π7)+2isin(2π7)cos(π7)x_{4} = - 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{2 \pi}{7} \right)} + 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + 2 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + 2 i \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}
    x5=2sin(π7)sin(2π7)+2cos(π7)cos(2π7)2isin(2π7)cos(π7)+2isin(π7)cos(2π7)x_{5} = 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{2 \pi}{7} \right)} + 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} - 2 i \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} + 2 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)}
    x6=2sin(π7)sin(3π7)2cos(π7)cos(3π7)2isin(π7)cos(3π7)+2isin(3π7)cos(π7)x_{6} = - 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{3 \pi}{7} \right)} - 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} - 2 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 i \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}
    x7=2cos(π7)cos(3π7)+2sin(π7)sin(3π7)2isin(3π7)cos(π7)2isin(π7)cos(3π7)x_{7} = - 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{3 \pi}{7} \right)} - 2 i \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} - 2 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)}
    Быстрый ответ [src]
                2/pi\        2/pi\
    x1 = - 2*cos |--| - 2*sin |--|
                 \7 /         \7 /
    x1=2cos2(π7)2sin2(π7)x_{1} = - 2 \cos^{2}{\left(\frac{\pi}{7} \right)} - 2 \sin^{2}{\left(\frac{\pi}{7} \right)}
           /     /pi\    /2*pi\        /2*pi\    /pi\\        /pi\    /2*pi\        /pi\    /2*pi\
    x2 = I*|2*cos|--|*sin|----| + 2*cos|----|*sin|--|| - 2*sin|--|*sin|----| + 2*cos|--|*cos|----|
           \     \7 /    \ 7  /        \ 7  /    \7 //        \7 /    \ 7  /        \7 /    \ 7  /
    x2=2sin(π7)sin(2π7)+2cos(π7)cos(2π7)+i(2sin(π7)cos(2π7)+2sin(2π7)cos(π7))x_{2} = - 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{2 \pi}{7} \right)} + 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + i \left(2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + 2 \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}\right)
           /       /pi\    /2*pi\        /2*pi\    /pi\\        /pi\    /2*pi\        /pi\    /2*pi\
    x3 = I*|- 2*cos|--|*sin|----| + 2*cos|----|*sin|--|| + 2*cos|--|*cos|----| + 2*sin|--|*sin|----|
           \       \7 /    \ 7  /        \ 7  /    \7 //        \7 /    \ 7  /        \7 /    \ 7  /
    x3=2sin(π7)sin(2π7)+2cos(π7)cos(2π7)+i(2sin(2π7)cos(π7)+2sin(π7)cos(2π7))x_{3} = 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{2 \pi}{7} \right)} + 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} + 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)}\right)
           /       /3*pi\    /pi\        /pi\    /3*pi\\        /pi\    /3*pi\        /pi\    /3*pi\
    x4 = I*|- 2*cos|----|*sin|--| + 2*cos|--|*sin|----|| - 2*cos|--|*cos|----| - 2*sin|--|*sin|----|
           \       \ 7  /    \7 /        \7 /    \ 7  //        \7 /    \ 7  /        \7 /    \ 7  /
    x4=2sin(π7)sin(3π7)2cos(π7)cos(3π7)+i(2sin(π7)cos(3π7)+2sin(3π7)cos(π7))x_{4} = - 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{3 \pi}{7} \right)} - 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}\right)
           /       /pi\    /3*pi\        /3*pi\    /pi\\        /pi\    /3*pi\        /pi\    /3*pi\
    x5 = I*|- 2*cos|--|*sin|----| - 2*cos|----|*sin|--|| - 2*cos|--|*cos|----| + 2*sin|--|*sin|----|
           \       \7 /    \ 7  /        \ 7  /    \7 //        \7 /    \ 7  /        \7 /    \ 7  /
    x5=2cos(π7)cos(3π7)+2sin(π7)sin(3π7)+i(2sin(3π7)cos(π7)2sin(π7)cos(3π7))x_{5} = - 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{3 \pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} - 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)}\right)
              /pi\          /pi\
    x6 = 2*cos|--| + 2*I*sin|--|
              \7 /          \7 /
    x6=2cos(π7)+2isin(π7)x_{6} = 2 \cos{\left(\frac{\pi}{7} \right)} + 2 i \sin{\left(\frac{\pi}{7} \right)}
                2/pi\        2/pi\          /pi\    /pi\
    x7 = - 2*cos |--| + 2*sin |--| - 4*I*cos|--|*sin|--|
                 \7 /         \7 /          \7 /    \7 /
    x7=2cos2(π7)+2sin2(π7)4isin(π7)cos(π7)x_{7} = - 2 \cos^{2}{\left(\frac{\pi}{7} \right)} + 2 \sin^{2}{\left(\frac{\pi}{7} \right)} - 4 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}
    Сумма и произведение корней [src]
    сумма
           2/pi\        2/pi\     /     /pi\    /2*pi\        /2*pi\    /pi\\        /pi\    /2*pi\        /pi\    /2*pi\     /       /pi\    /2*pi\        /2*pi\    /pi\\        /pi\    /2*pi\        /pi\    /2*pi\     /       /3*pi\    /pi\        /pi\    /3*pi\\        /pi\    /3*pi\        /pi\    /3*pi\     /       /pi\    /3*pi\        /3*pi\    /pi\\        /pi\    /3*pi\        /pi\    /3*pi\        /pi\          /pi\          2/pi\        2/pi\          /pi\    /pi\
    - 2*cos |--| - 2*sin |--| + I*|2*cos|--|*sin|----| + 2*cos|----|*sin|--|| - 2*sin|--|*sin|----| + 2*cos|--|*cos|----| + I*|- 2*cos|--|*sin|----| + 2*cos|----|*sin|--|| + 2*cos|--|*cos|----| + 2*sin|--|*sin|----| + I*|- 2*cos|----|*sin|--| + 2*cos|--|*sin|----|| - 2*cos|--|*cos|----| - 2*sin|--|*sin|----| + I*|- 2*cos|--|*sin|----| - 2*cos|----|*sin|--|| - 2*cos|--|*cos|----| + 2*sin|--|*sin|----| + 2*cos|--| + 2*I*sin|--| + - 2*cos |--| + 2*sin |--| - 4*I*cos|--|*sin|--|
            \7 /         \7 /     \     \7 /    \ 7  /        \ 7  /    \7 //        \7 /    \ 7  /        \7 /    \ 7  /     \       \7 /    \ 7  /        \ 7  /    \7 //        \7 /    \ 7  /        \7 /    \ 7  /     \       \ 7  /    \7 /        \7 /    \ 7  //        \7 /    \ 7  /        \7 /    \ 7  /     \       \7 /    \ 7  /        \ 7  /    \7 //        \7 /    \ 7  /        \7 /    \ 7  /        \7 /          \7 /           \7 /         \7 /          \7 /    \7 /
    (2cos2(π7)+2sin2(π7)4isin(π7)cos(π7))+(((2cos(π7)cos(3π7)+2sin(π7)sin(3π7)+i(2sin(3π7)cos(π7)2sin(π7)cos(3π7)))+(((2sin(π7)sin(2π7)+2cos(π7)cos(2π7)+i(2sin(2π7)cos(π7)+2sin(π7)cos(2π7)))+((2cos2(π7)2sin2(π7))+(2sin(π7)sin(2π7)+2cos(π7)cos(2π7)+i(2sin(π7)cos(2π7)+2sin(2π7)cos(π7)))))+(2sin(π7)sin(3π7)2cos(π7)cos(3π7)+i(2sin(π7)cos(3π7)+2sin(3π7)cos(π7)))))+(2cos(π7)+2isin(π7)))\left(- 2 \cos^{2}{\left(\frac{\pi}{7} \right)} + 2 \sin^{2}{\left(\frac{\pi}{7} \right)} - 4 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}\right) + \left(\left(\left(- 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{3 \pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} - 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)}\right)\right) + \left(\left(\left(2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{2 \pi}{7} \right)} + 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} + 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)}\right)\right) + \left(\left(- 2 \cos^{2}{\left(\frac{\pi}{7} \right)} - 2 \sin^{2}{\left(\frac{\pi}{7} \right)}\right) + \left(- 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{2 \pi}{7} \right)} + 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + i \left(2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + 2 \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}\right)\right)\right)\right) + \left(- 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{3 \pi}{7} \right)} - 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}\right)\right)\right)\right) + \left(2 \cos{\left(\frac{\pi}{7} \right)} + 2 i \sin{\left(\frac{\pi}{7} \right)}\right)\right)
    =
           2/pi\        /pi\     /       /pi\    /2*pi\        /2*pi\    /pi\\     /       /pi\    /3*pi\        /3*pi\    /pi\\     /       /3*pi\    /pi\        /pi\    /3*pi\\     /     /pi\    /2*pi\        /2*pi\    /pi\\        /pi\    /3*pi\          /pi\        /pi\    /2*pi\          /pi\    /pi\
    - 4*cos |--| + 2*cos|--| + I*|- 2*cos|--|*sin|----| + 2*cos|----|*sin|--|| + I*|- 2*cos|--|*sin|----| - 2*cos|----|*sin|--|| + I*|- 2*cos|----|*sin|--| + 2*cos|--|*sin|----|| + I*|2*cos|--|*sin|----| + 2*cos|----|*sin|--|| - 4*cos|--|*cos|----| + 2*I*sin|--| + 4*cos|--|*cos|----| - 4*I*cos|--|*sin|--|
            \7 /        \7 /     \       \7 /    \ 7  /        \ 7  /    \7 //     \       \7 /    \ 7  /        \ 7  /    \7 //     \       \ 7  /    \7 /        \7 /    \ 7  //     \     \7 /    \ 7  /        \ 7  /    \7 //        \7 /    \ 7  /          \7 /        \7 /    \ 7  /          \7 /    \7 /
    4cos2(π7)4cos(π7)cos(3π7)+2cos(π7)+4cos(π7)cos(2π7)+i(2sin(3π7)cos(π7)2sin(π7)cos(3π7))4isin(π7)cos(π7)+i(2sin(2π7)cos(π7)+2sin(π7)cos(2π7))+2isin(π7)+i(2sin(π7)cos(3π7)+2sin(3π7)cos(π7))+i(2sin(π7)cos(2π7)+2sin(2π7)cos(π7))- 4 \cos^{2}{\left(\frac{\pi}{7} \right)} - 4 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 \cos{\left(\frac{\pi}{7} \right)} + 4 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} - 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)}\right) - 4 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} + 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)}\right) + 2 i \sin{\left(\frac{\pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}\right) + i \left(2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + 2 \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}\right)
    произведение
    /       2/pi\        2/pi\\ /  /     /pi\    /2*pi\        /2*pi\    /pi\\        /pi\    /2*pi\        /pi\    /2*pi\\ /  /       /pi\    /2*pi\        /2*pi\    /pi\\        /pi\    /2*pi\        /pi\    /2*pi\\ /  /       /3*pi\    /pi\        /pi\    /3*pi\\        /pi\    /3*pi\        /pi\    /3*pi\\ /  /       /pi\    /3*pi\        /3*pi\    /pi\\        /pi\    /3*pi\        /pi\    /3*pi\\ /     /pi\          /pi\\ /       2/pi\        2/pi\          /pi\    /pi\\
    |- 2*cos |--| - 2*sin |--||*|I*|2*cos|--|*sin|----| + 2*cos|----|*sin|--|| - 2*sin|--|*sin|----| + 2*cos|--|*cos|----||*|I*|- 2*cos|--|*sin|----| + 2*cos|----|*sin|--|| + 2*cos|--|*cos|----| + 2*sin|--|*sin|----||*|I*|- 2*cos|----|*sin|--| + 2*cos|--|*sin|----|| - 2*cos|--|*cos|----| - 2*sin|--|*sin|----||*|I*|- 2*cos|--|*sin|----| - 2*cos|----|*sin|--|| - 2*cos|--|*cos|----| + 2*sin|--|*sin|----||*|2*cos|--| + 2*I*sin|--||*|- 2*cos |--| + 2*sin |--| - 4*I*cos|--|*sin|--||
    \        \7 /         \7 // \  \     \7 /    \ 7  /        \ 7  /    \7 //        \7 /    \ 7  /        \7 /    \ 7  // \  \       \7 /    \ 7  /        \ 7  /    \7 //        \7 /    \ 7  /        \7 /    \ 7  // \  \       \ 7  /    \7 /        \7 /    \ 7  //        \7 /    \ 7  /        \7 /    \ 7  // \  \       \7 /    \ 7  /        \ 7  /    \7 //        \7 /    \ 7  /        \7 /    \ 7  // \     \7 /          \7 // \        \7 /         \7 /          \7 /    \7 //
    (2cos2(π7)2sin2(π7))(2sin(π7)sin(2π7)+2cos(π7)cos(2π7)+i(2sin(π7)cos(2π7)+2sin(2π7)cos(π7)))(2sin(π7)sin(2π7)+2cos(π7)cos(2π7)+i(2sin(2π7)cos(π7)+2sin(π7)cos(2π7)))(2sin(π7)sin(3π7)2cos(π7)cos(3π7)+i(2sin(π7)cos(3π7)+2sin(3π7)cos(π7)))(2cos(π7)cos(3π7)+2sin(π7)sin(3π7)+i(2sin(3π7)cos(π7)2sin(π7)cos(3π7)))(2cos(π7)+2isin(π7))(2cos2(π7)+2sin2(π7)4isin(π7)cos(π7))\left(- 2 \cos^{2}{\left(\frac{\pi}{7} \right)} - 2 \sin^{2}{\left(\frac{\pi}{7} \right)}\right) \left(- 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{2 \pi}{7} \right)} + 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + i \left(2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + 2 \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}\right)\right) \left(2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{2 \pi}{7} \right)} + 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{2 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} + 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{2 \pi}{7} \right)}\right)\right) \left(- 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{3 \pi}{7} \right)} - 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}\right)\right) \left(- 2 \cos{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)} + 2 \sin{\left(\frac{\pi}{7} \right)} \sin{\left(\frac{3 \pi}{7} \right)} + i \left(- 2 \sin{\left(\frac{3 \pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)} - 2 \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{3 \pi}{7} \right)}\right)\right) \left(2 \cos{\left(\frac{\pi}{7} \right)} + 2 i \sin{\left(\frac{\pi}{7} \right)}\right) \left(- 2 \cos^{2}{\left(\frac{\pi}{7} \right)} + 2 \sin^{2}{\left(\frac{\pi}{7} \right)} - 4 i \sin{\left(\frac{\pi}{7} \right)} \cos{\left(\frac{\pi}{7} \right)}\right)
    =
    -128
    128-128
    Численный ответ [src]
    x1 = -1.24697960371747 + 1.56366296493606*i
    x2 = 1.80193773580484 - 0.867767478235116*i
    x3 = 0.445041867912629 - 1.94985582436365*i
    x4 = -1.24697960371747 - 1.56366296493606*i
    x5 = -2.0
    x6 = 0.445041867912629 + 1.94985582436365*i
    x7 = 1.80193773580484 + 0.867767478235116*i