Решите уравнение x^6-1=0 (х в степени 6 минус 1 равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

x^6-1=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^6-1=0

    Решение

    Вы ввели [src]
     6        
    x  - 1 = 0
    $$x^{6} - 1 = 0$$
    Подробное решение
    Дано уравнение
    $$x^{6} - 1 = 0$$
    Т.к. степень в ур-нии равна = 6 - содержит чётное число 6 в числителе, то
    ур-ние будет иметь два действительных корня.
    Извлечём корень 6-й степени из обеих частей ур-ния:
    Получим:
    $$\sqrt[6]{\left(1 x + 0\right)^{6}} = 1$$
    $$\sqrt[6]{\left(1 x + 0\right)^{6}} = -1$$
    или
    $$x = 1$$
    $$x = -1$$
    Получим ответ: x = 1
    Получим ответ: x = -1
    или
    $$x_{1} = -1$$
    $$x_{2} = 1$$

    Остальные 4 корня(ей) являются комплексными.
    сделаем замену:
    $$z = x$$
    тогда ур-ние будет таким:
    $$z^{6} = 1$$
    Любое комплексное число можно представить так:
    $$z = r e^{i p}$$
    подставляем в уравнение
    $$r^{6} e^{6 i p} = 1$$
    где
    $$r = 1$$
    - модуль комплексного числа
    Подставляем r:
    $$e^{6 i p} = 1$$
    Используя формулу Эйлера, найдём корни для p
    $$i \sin{\left(6 p \right)} + \cos{\left(6 p \right)} = 1$$
    значит
    $$\cos{\left(6 p \right)} = 1$$
    и
    $$\sin{\left(6 p \right)} = 0$$
    тогда
    $$p = \frac{\pi N}{3}$$
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    $$z_{1} = -1$$
    $$z_{2} = 1$$
    $$z_{3} = - \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
    $$z_{4} = - \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
    $$z_{5} = \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
    $$z_{6} = \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
    делаем обратную замену
    $$z = x$$
    $$x = z$$

    Тогда, окончательный ответ:
    $$x_{1} = -1$$
    $$x_{2} = 1$$
    $$x_{3} = - \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
    $$x_{4} = - \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
    $$x_{5} = \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
    $$x_{6} = \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
    График
    Быстрый ответ [src]
    x1 = -1
    $$x_{1} = -1$$
    x2 = 1
    $$x_{2} = 1$$
                   ___
           1   I*\/ 3 
    x3 = - - - -------
           2      2   
    $$x_{3} = - \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
                   ___
           1   I*\/ 3 
    x4 = - - + -------
           2      2   
    $$x_{4} = - \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
                 ___
         1   I*\/ 3 
    x5 = - - -------
         2      2   
    $$x_{5} = \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
                 ___
         1   I*\/ 3 
    x6 = - + -------
         2      2   
    $$x_{6} = \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
    Сумма и произведение корней [src]
    сумма
                          ___             ___           ___           ___
                  1   I*\/ 3      1   I*\/ 3    1   I*\/ 3    1   I*\/ 3 
    0 - 1 + 1 + - - - ------- + - - + ------- + - - ------- + - + -------
                  2      2        2      2      2      2      2      2   
    $$\left(\left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right) + \left(\left(\left(\left(-1 + 0\right) + 1\right) - \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)\right) - \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)\right)\right) + \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)$$
    =
    0
    $$0$$
    произведение
           /          ___\ /          ___\ /        ___\ /        ___\
           |  1   I*\/ 3 | |  1   I*\/ 3 | |1   I*\/ 3 | |1   I*\/ 3 |
    1*-1*1*|- - - -------|*|- - + -------|*|- - -------|*|- + -------|
           \  2      2   / \  2      2   / \2      2   / \2      2   /
    $$1 \left(-1\right) 1 \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)$$
    =
    -1
    $$-1$$
    Численный ответ [src]
    x1 = 0.5 - 0.866025403784439*i
    x2 = -0.5 + 0.866025403784439*i
    x3 = -0.5 - 0.866025403784439*i
    x4 = 1.0
    x5 = -1.0
    x6 = 0.5 + 0.866025403784439*i
    График
    x^6-1=0 (уравнение) /media/krcore-image-pods/hash/equation/1/53/a66c0ac763fca3a85bb662163e7a6.png