x^6-18=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: x^6-18=0
Решение
Подробное решение
Дано уравнениеx 6 − 18 = 0 x^{6} - 18 = 0 x 6 − 18 = 0 Т.к. степень в ур-нии равна = 6 - содержит чётное число 6 в числителе, то ур-ние будет иметь два действительных корня. Извлечём корень 6-й степени из обеих частей ур-ния: Получим:( 1 x + 0 ) 6 6 = 18 6 \sqrt[6]{\left(1 x + 0\right)^{6}} = \sqrt[6]{18} 6 ( 1 x + 0 ) 6 = 6 18 ( 1 x + 0 ) 6 6 = 18 6 ( − 1 ) \sqrt[6]{\left(1 x + 0\right)^{6}} = \sqrt[6]{18} \left(-1\right) 6 ( 1 x + 0 ) 6 = 6 18 ( − 1 ) илиx = 2 6 ⋅ 3 3 x = \sqrt[6]{2} \cdot \sqrt[3]{3} x = 6 2 ⋅ 3 3 x = − 2 6 ⋅ 3 3 x = - \sqrt[6]{2} \cdot \sqrt[3]{3} x = − 6 2 ⋅ 3 3 Раскрываем скобочки в правой части ур-нияx = 2^1/6*3^1/3 Получим ответ: x = 2^(1/6)*3^(1/3) Раскрываем скобочки в правой части ур-нияx = -2^1/6*3^1/3 Получим ответ: x = -2^(1/6)*3^(1/3) илиx 1 = − 2 6 ⋅ 3 3 x_{1} = - \sqrt[6]{2} \cdot \sqrt[3]{3} x 1 = − 6 2 ⋅ 3 3 x 2 = 2 6 ⋅ 3 3 x_{2} = \sqrt[6]{2} \cdot \sqrt[3]{3} x 2 = 6 2 ⋅ 3 3 Остальные 4 корня(ей) являются комплексными. сделаем замену:z = x z = x z = x тогда ур-ние будет таким:z 6 = 18 z^{6} = 18 z 6 = 18 Любое комплексное число можно представить так:z = r e i p z = r e^{i p} z = r e i p подставляем в уравнениеr 6 e 6 i p = 18 r^{6} e^{6 i p} = 18 r 6 e 6 i p = 18 гдеr = 2 6 ⋅ 3 3 r = \sqrt[6]{2} \cdot \sqrt[3]{3} r = 6 2 ⋅ 3 3 - модуль комплексного числа Подставляем r:e 6 i p = 1 e^{6 i p} = 1 e 6 i p = 1 Используя формулу Эйлера, найдём корни для pi sin ( 6 p ) + cos ( 6 p ) = 1 i \sin{\left(6 p \right)} + \cos{\left(6 p \right)} = 1 i sin ( 6 p ) + cos ( 6 p ) = 1 значитcos ( 6 p ) = 1 \cos{\left(6 p \right)} = 1 cos ( 6 p ) = 1 иsin ( 6 p ) = 0 \sin{\left(6 p \right)} = 0 sin ( 6 p ) = 0 тогдаp = π N 3 p = \frac{\pi N}{3} p = 3 π N где N=0,1,2,3,... Перебирая значения N и подставив p в формулу для z Значит, решением будет для z:z 1 = − 2 6 ⋅ 3 3 z_{1} = - \sqrt[6]{2} \cdot \sqrt[3]{3} z 1 = − 6 2 ⋅ 3 3 z 2 = 2 6 ⋅ 3 3 z_{2} = \sqrt[6]{2} \cdot \sqrt[3]{3} z 2 = 6 2 ⋅ 3 3 z 3 = − 2 6 ⋅ 3 3 2 − 2 6 ⋅ 3 5 6 i 2 z_{3} = - \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} - \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} z 3 = − 2 6 2 ⋅ 3 3 − 2 6 2 ⋅ 3 6 5 i z 4 = − 2 6 ⋅ 3 3 2 + 2 6 ⋅ 3 5 6 i 2 z_{4} = - \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} + \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} z 4 = − 2 6 2 ⋅ 3 3 + 2 6 2 ⋅ 3 6 5 i z 5 = 2 6 ⋅ 3 3 2 − 2 6 ⋅ 3 5 6 i 2 z_{5} = \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} - \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} z 5 = 2 6 2 ⋅ 3 3 − 2 6 2 ⋅ 3 6 5 i z 6 = 2 6 ⋅ 3 3 2 + 2 6 ⋅ 3 5 6 i 2 z_{6} = \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} + \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} z 6 = 2 6 2 ⋅ 3 3 + 2 6 2 ⋅ 3 6 5 i делаем обратную заменуz = x z = x z = x x = z x = z x = z Тогда, окончательный ответ:x 1 = − 2 6 ⋅ 3 3 x_{1} = - \sqrt[6]{2} \cdot \sqrt[3]{3} x 1 = − 6 2 ⋅ 3 3 x 2 = 2 6 ⋅ 3 3 x_{2} = \sqrt[6]{2} \cdot \sqrt[3]{3} x 2 = 6 2 ⋅ 3 3 x 3 = − 2 6 ⋅ 3 3 2 − 2 6 ⋅ 3 5 6 i 2 x_{3} = - \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} - \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} x 3 = − 2 6 2 ⋅ 3 3 − 2 6 2 ⋅ 3 6 5 i x 4 = − 2 6 ⋅ 3 3 2 + 2 6 ⋅ 3 5 6 i 2 x_{4} = - \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} + \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} x 4 = − 2 6 2 ⋅ 3 3 + 2 6 2 ⋅ 3 6 5 i x 5 = 2 6 ⋅ 3 3 2 − 2 6 ⋅ 3 5 6 i 2 x_{5} = \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} - \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} x 5 = 2 6 2 ⋅ 3 3 − 2 6 2 ⋅ 3 6 5 i x 6 = 2 6 ⋅ 3 3 2 + 2 6 ⋅ 3 5 6 i 2 x_{6} = \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} + \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} x 6 = 2 6 2 ⋅ 3 3 + 2 6 2 ⋅ 3 6 5 i
График
0 2 4 6 8 10 12 14 16 5000000 -2500000
6 ___ 3 ___
x1 = -\/ 2 *\/ 3 x 1 = − 2 6 ⋅ 3 3 x_{1} = - \sqrt[6]{2} \cdot \sqrt[3]{3} x 1 = − 6 2 ⋅ 3 3 6 ___ 3 ___
x2 = \/ 2 *\/ 3 x 2 = 2 6 ⋅ 3 3 x_{2} = \sqrt[6]{2} \cdot \sqrt[3]{3} x 2 = 6 2 ⋅ 3 3 6 ___ 3 ___ 6 ___ 5/6
\/ 2 *\/ 3 I*\/ 2 *3
x3 = - ----------- - ------------
2 2 x 3 = − 2 6 ⋅ 3 3 2 − 2 6 ⋅ 3 5 6 i 2 x_{3} = - \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} - \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} x 3 = − 2 6 2 ⋅ 3 3 − 2 6 2 ⋅ 3 6 5 i 6 ___ 3 ___ 6 ___ 5/6
\/ 2 *\/ 3 I*\/ 2 *3
x4 = - ----------- + ------------
2 2 x 4 = − 2 6 ⋅ 3 3 2 + 2 6 ⋅ 3 5 6 i 2 x_{4} = - \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} + \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} x 4 = − 2 6 2 ⋅ 3 3 + 2 6 2 ⋅ 3 6 5 i 6 ___ 3 ___ 6 ___ 5/6
\/ 2 *\/ 3 I*\/ 2 *3
x5 = ----------- - ------------
2 2 x 5 = 2 6 ⋅ 3 3 2 − 2 6 ⋅ 3 5 6 i 2 x_{5} = \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} - \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} x 5 = 2 6 2 ⋅ 3 3 − 2 6 2 ⋅ 3 6 5 i 6 ___ 3 ___ 6 ___ 5/6
\/ 2 *\/ 3 I*\/ 2 *3
x6 = ----------- + ------------
2 2 x 6 = 2 6 ⋅ 3 3 2 + 2 6 ⋅ 3 5 6 i 2 x_{6} = \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} + \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2} x 6 = 2 6 2 ⋅ 3 3 + 2 6 2 ⋅ 3 6 5 i
Сумма и произведение корней
[src] 6 ___ 3 ___ 6 ___ 5/6 6 ___ 3 ___ 6 ___ 5/6 6 ___ 3 ___ 6 ___ 5/6 6 ___ 3 ___ 6 ___ 5/6
6 ___ 3 ___ 6 ___ 3 ___ \/ 2 *\/ 3 I*\/ 2 *3 \/ 2 *\/ 3 I*\/ 2 *3 \/ 2 *\/ 3 I*\/ 2 *3 \/ 2 *\/ 3 I*\/ 2 *3
0 - \/ 2 *\/ 3 + \/ 2 *\/ 3 + - ----------- - ------------ + - ----------- + ------------ + ----------- - ------------ + ----------- + ------------
2 2 2 2 2 2 2 2 ( ( 2 6 ⋅ 3 3 2 − 2 6 ⋅ 3 5 6 i 2 ) + ( ( ( ( − 2 6 ⋅ 3 3 + 0 ) + 2 6 ⋅ 3 3 ) − ( 2 6 ⋅ 3 3 2 + 2 6 ⋅ 3 5 6 i 2 ) ) − ( 2 6 ⋅ 3 3 2 − 2 6 ⋅ 3 5 6 i 2 ) ) ) + ( 2 6 ⋅ 3 3 2 + 2 6 ⋅ 3 5 6 i 2 ) \left(\left(\frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} - \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2}\right) + \left(\left(\left(\left(- \sqrt[6]{2} \cdot \sqrt[3]{3} + 0\right) + \sqrt[6]{2} \cdot \sqrt[3]{3}\right) - \left(\frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} + \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2}\right)\right) - \left(\frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} - \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2}\right)\right)\right) + \left(\frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} + \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2}\right) ( ( 2 6 2 ⋅ 3 3 − 2 6 2 ⋅ 3 6 5 i ) + ( ( ( ( − 6 2 ⋅ 3 3 + 0 ) + 6 2 ⋅ 3 3 ) − ( 2 6 2 ⋅ 3 3 + 2 6 2 ⋅ 3 6 5 i ) ) − ( 2 6 2 ⋅ 3 3 − 2 6 2 ⋅ 3 6 5 i ) ) ) + ( 2 6 2 ⋅ 3 3 + 2 6 2 ⋅ 3 6 5 i ) / 6 ___ 3 ___ 6 ___ 5/6\ / 6 ___ 3 ___ 6 ___ 5/6\ /6 ___ 3 ___ 6 ___ 5/6\ /6 ___ 3 ___ 6 ___ 5/6\
6 ___ 3 ___ 6 ___ 3 ___ | \/ 2 *\/ 3 I*\/ 2 *3 | | \/ 2 *\/ 3 I*\/ 2 *3 | |\/ 2 *\/ 3 I*\/ 2 *3 | |\/ 2 *\/ 3 I*\/ 2 *3 |
1*-\/ 2 *\/ 3 *\/ 2 *\/ 3 *|- ----------- - ------------|*|- ----------- + ------------|*|----------- - ------------|*|----------- + ------------|
\ 2 2 / \ 2 2 / \ 2 2 / \ 2 2 / 2 6 ⋅ 3 3 ⋅ 1 ( − 2 6 ⋅ 3 3 ) ( − 2 6 ⋅ 3 3 2 − 2 6 ⋅ 3 5 6 i 2 ) ( − 2 6 ⋅ 3 3 2 + 2 6 ⋅ 3 5 6 i 2 ) ( 2 6 ⋅ 3 3 2 − 2 6 ⋅ 3 5 6 i 2 ) ( 2 6 ⋅ 3 3 2 + 2 6 ⋅ 3 5 6 i 2 ) \sqrt[6]{2} \cdot \sqrt[3]{3} \cdot 1 \left(- \sqrt[6]{2} \cdot \sqrt[3]{3}\right) \left(- \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} - \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2}\right) \left(- \frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} + \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2}\right) \left(\frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} - \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2}\right) \left(\frac{\sqrt[6]{2} \cdot \sqrt[3]{3}}{2} + \frac{\sqrt[6]{2} \cdot 3^{\frac{5}{6}} i}{2}\right) 6 2 ⋅ 3 3 ⋅ 1 ( − 6 2 ⋅ 3 3 ) ( − 2 6 2 ⋅ 3 3 − 2 6 2 ⋅ 3 6 5 i ) ( − 2 6 2 ⋅ 3 3 + 2 6 2 ⋅ 3 6 5 i ) ( 2 6 2 ⋅ 3 3 − 2 6 2 ⋅ 3 6 5 i ) ( 2 6 2 ⋅ 3 3 + 2 6 2 ⋅ 3 6 5 i ) x2 = 0.809435203430283 - 1.4019828977761*i x3 = -0.809435203430283 - 1.4019828977761*i x4 = -0.809435203430283 + 1.4019828977761*i x5 = 0.809435203430283 + 1.4019828977761*i