x^100=1 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^100=1

    Решение

    Вы ввели [src]
     100    
    x    = 1
    x100=1x^{100} = 1
    Подробное решение
    Дано уравнение
    x100=1x^{100} = 1
    Т.к. степень в ур-нии равна = 100 - содержит чётное число 100 в числителе, то
    ур-ние будет иметь два действительных корня.
    Извлечём корень 100-й степени из обеих частей ур-ния:
    Получим:
    (1x+0)100100=1100\sqrt[100]{\left(1 x + 0\right)^{100}} = \sqrt[100]{1}
    (1x+0)100100=1100(1)\sqrt[100]{\left(1 x + 0\right)^{100}} = \sqrt[100]{1} \left(-1\right)
    или
    x=1x = 1
    x=1x = -1
    Получим ответ: x = 1
    Получим ответ: x = -1
    или
    x1=1x_{1} = -1
    x2=1x_{2} = 1

    Остальные 98 корня(ей) являются комплексными.
    сделаем замену:
    z=xz = x
    тогда ур-ние будет таким:
    z100=1z^{100} = 1
    Любое комплексное число можно представить так:
    z=reipz = r e^{i p}
    подставляем в уравнение
    r100e100ip=1r^{100} e^{100 i p} = 1
    где
    r=1r = 1
    - модуль комплексного числа
    Подставляем r:
    e100ip=1e^{100 i p} = 1
    Используя формулу Эйлера, найдём корни для p
    isin(100p)+cos(100p)=1i \sin{\left(100 p \right)} + \cos{\left(100 p \right)} = 1
    значит
    cos(100p)=1\cos{\left(100 p \right)} = 1
    и
    sin(100p)=0\sin{\left(100 p \right)} = 0
    тогда
    p=πN50p = \frac{\pi N}{50}
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    z1=1z_{1} = -1
    z2=1z_{2} = 1
    z3=iz_{3} = - i
    z4=iz_{4} = i
    z5=cos(π50)isin(π50)z_{5} = - \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}
    z6=cos(π50)+isin(π50)z_{6} = - \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}
    z7=cos(π50)isin(π50)z_{7} = \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}
    z8=cos(π50)+isin(π50)z_{8} = \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}
    z9=cos(π25)isin(π25)z_{9} = - \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}
    z10=cos(π25)+isin(π25)z_{10} = - \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}
    z11=cos(π25)isin(π25)z_{11} = \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}
    z12=cos(π25)+isin(π25)z_{12} = \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}
    z13=cos(3π50)isin(3π50)z_{13} = - \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}
    z14=cos(3π50)+isin(3π50)z_{14} = - \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}
    z15=cos(3π50)isin(3π50)z_{15} = \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}
    z16=cos(3π50)+isin(3π50)z_{16} = \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}
    z17=cos(2π25)isin(2π25)z_{17} = - \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}
    z18=cos(2π25)+isin(2π25)z_{18} = - \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}
    z19=cos(2π25)isin(2π25)z_{19} = \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}
    z20=cos(2π25)+isin(2π25)z_{20} = \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}
    z21=cos(3π25)isin(3π25)z_{21} = - \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}
    z22=cos(3π25)+isin(3π25)z_{22} = - \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}
    z23=cos(3π25)isin(3π25)z_{23} = \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}
    z24=cos(3π25)+isin(3π25)z_{24} = \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}
    z25=cos(7π50)isin(7π50)z_{25} = - \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}
    z26=cos(7π50)+isin(7π50)z_{26} = - \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}
    z27=cos(7π50)isin(7π50)z_{27} = \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}
    z28=cos(7π50)+isin(7π50)z_{28} = \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}
    z29=cos(4π25)isin(4π25)z_{29} = - \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}
    z30=cos(4π25)+isin(4π25)z_{30} = - \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}
    z31=cos(4π25)isin(4π25)z_{31} = \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}
    z32=cos(4π25)+isin(4π25)z_{32} = \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}
    z33=cos(9π50)isin(9π50)z_{33} = - \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}
    z34=cos(9π50)+isin(9π50)z_{34} = - \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}
    z35=cos(9π50)isin(9π50)z_{35} = \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}
    z36=cos(9π50)+isin(9π50)z_{36} = \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}
    z37=cos(11π50)isin(11π50)z_{37} = - \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}
    z38=cos(11π50)+isin(11π50)z_{38} = - \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}
    z39=cos(11π50)isin(11π50)z_{39} = \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}
    z40=cos(11π50)+isin(11π50)z_{40} = \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}
    z41=cos(6π25)isin(6π25)z_{41} = - \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}
    z42=cos(6π25)+isin(6π25)z_{42} = - \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}
    z43=cos(6π25)isin(6π25)z_{43} = \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}
    z44=cos(6π25)+isin(6π25)z_{44} = \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}
    z45=cos(13π50)isin(13π50)z_{45} = - \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}
    z46=cos(13π50)+isin(13π50)z_{46} = - \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}
    z47=cos(13π50)isin(13π50)z_{47} = \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}
    z48=cos(13π50)+isin(13π50)z_{48} = \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}
    z49=cos(7π25)isin(7π25)z_{49} = - \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}
    z50=cos(7π25)+isin(7π25)z_{50} = - \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}
    z51=cos(7π25)isin(7π25)z_{51} = \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}
    z52=cos(7π25)+isin(7π25)z_{52} = \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}
    z53=cos(8π25)isin(8π25)z_{53} = - \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}
    z54=cos(8π25)+isin(8π25)z_{54} = - \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}
    z55=cos(8π25)isin(8π25)z_{55} = \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}
    z56=cos(8π25)+isin(8π25)z_{56} = \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}
    z57=cos(17π50)isin(17π50)z_{57} = - \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}
    z58=cos(17π50)+isin(17π50)z_{58} = - \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}
    z59=cos(17π50)isin(17π50)z_{59} = \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}
    z60=cos(17π50)+isin(17π50)z_{60} = \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}
    z61=cos(9π25)isin(9π25)z_{61} = - \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}
    z62=cos(9π25)+isin(9π25)z_{62} = - \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}
    z63=cos(9π25)isin(9π25)z_{63} = \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}
    z64=cos(9π25)+isin(9π25)z_{64} = \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}
    z65=cos(19π50)isin(19π50)z_{65} = - \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}
    z66=cos(19π50)+isin(19π50)z_{66} = - \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}
    z67=cos(19π50)isin(19π50)z_{67} = \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}
    z68=cos(19π50)+isin(19π50)z_{68} = \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}
    z69=cos(21π50)isin(21π50)z_{69} = - \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}
    z70=cos(21π50)+isin(21π50)z_{70} = - \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}
    z71=cos(21π50)isin(21π50)z_{71} = \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}
    z72=cos(21π50)+isin(21π50)z_{72} = \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}
    z73=cos(11π25)isin(11π25)z_{73} = - \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}
    z74=cos(11π25)+isin(11π25)z_{74} = - \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}
    z75=cos(11π25)isin(11π25)z_{75} = \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}
    z76=cos(11π25)+isin(11π25)z_{76} = \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}
    z77=cos(23π50)isin(23π50)z_{77} = - \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}
    z78=cos(23π50)+isin(23π50)z_{78} = - \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}
    z79=cos(23π50)isin(23π50)z_{79} = \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}
    z80=cos(23π50)+isin(23π50)z_{80} = \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}
    z81=cos(12π25)isin(12π25)z_{81} = - \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}
    z82=cos(12π25)+isin(12π25)z_{82} = - \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}
    z83=cos(12π25)isin(12π25)z_{83} = \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}
    z84=cos(12π25)+isin(12π25)z_{84} = \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}
    z85=14+54i58+58z_{85} = - \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
    z86=14+54+i58+58z_{86} = - \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
    z87=14+54i5858z_{87} = \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
    z88=14+54+i5858z_{88} = \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
    z89=5414i5858z_{89} = - \frac{\sqrt{5}}{4} - \frac{1}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
    z90=5414+i5858z_{90} = - \frac{\sqrt{5}}{4} - \frac{1}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
    z91=54+14i58+58z_{91} = - \frac{\sqrt{5}}{4} + \frac{1}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
    z92=54+14+i58+58z_{92} = - \frac{\sqrt{5}}{4} + \frac{1}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
    z93=5858+i4+5i4z_{93} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + \frac{i}{4} + \frac{\sqrt{5} i}{4}
    z94=58585i4i4z_{94} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} - \frac{\sqrt{5} i}{4} - \frac{i}{4}
    z95=5858+i4+5i4z_{95} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + \frac{i}{4} + \frac{\sqrt{5} i}{4}
    z96=58585i4i4z_{96} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} - \frac{\sqrt{5} i}{4} - \frac{i}{4}
    z97=58+58i4+5i4z_{97} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{4} + \frac{\sqrt{5} i}{4}
    z98=58+585i4+i4z_{98} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i}{4} + \frac{i}{4}
    z99=58+58i4+5i4z_{99} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{4} + \frac{\sqrt{5} i}{4}
    z100=58+585i4+i4z_{100} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i}{4} + \frac{i}{4}
    делаем обратную замену
    z=xz = x
    x=zx = z

    Тогда, окончательный ответ:
    x1=1x_{1} = -1
    x2=1x_{2} = 1
    x3=ix_{3} = - i
    x4=ix_{4} = i
    x5=cos(π50)isin(π50)x_{5} = - \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}
    x6=cos(π50)+isin(π50)x_{6} = - \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}
    x7=cos(π50)isin(π50)x_{7} = \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}
    x8=cos(π50)+isin(π50)x_{8} = \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}
    x9=cos(π25)isin(π25)x_{9} = - \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}
    x10=cos(π25)+isin(π25)x_{10} = - \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}
    x11=cos(π25)isin(π25)x_{11} = \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}
    x12=cos(π25)+isin(π25)x_{12} = \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}
    x13=cos(3π50)isin(3π50)x_{13} = - \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}
    x14=cos(3π50)+isin(3π50)x_{14} = - \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}
    x15=cos(3π50)isin(3π50)x_{15} = \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}
    x16=cos(3π50)+isin(3π50)x_{16} = \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}
    x17=cos(2π25)isin(2π25)x_{17} = - \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}
    x18=cos(2π25)+isin(2π25)x_{18} = - \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}
    x19=cos(2π25)isin(2π25)x_{19} = \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}
    x20=cos(2π25)+isin(2π25)x_{20} = \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}
    x21=cos(3π25)isin(3π25)x_{21} = - \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}
    x22=cos(3π25)+isin(3π25)x_{22} = - \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}
    x23=cos(3π25)isin(3π25)x_{23} = \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}
    x24=cos(3π25)+isin(3π25)x_{24} = \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}
    x25=cos(7π50)isin(7π50)x_{25} = - \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}
    x26=cos(7π50)+isin(7π50)x_{26} = - \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}
    x27=cos(7π50)isin(7π50)x_{27} = \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}
    x28=cos(7π50)+isin(7π50)x_{28} = \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}
    x29=cos(4π25)isin(4π25)x_{29} = - \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}
    x30=cos(4π25)+isin(4π25)x_{30} = - \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}
    x31=cos(4π25)isin(4π25)x_{31} = \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}
    x32=cos(4π25)+isin(4π25)x_{32} = \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}
    x33=cos(9π50)isin(9π50)x_{33} = - \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}
    x34=cos(9π50)+isin(9π50)x_{34} = - \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}
    x35=cos(9π50)isin(9π50)x_{35} = \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}
    x36=cos(9π50)+isin(9π50)x_{36} = \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}
    x37=cos(11π50)isin(11π50)x_{37} = - \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}
    x38=cos(11π50)+isin(11π50)x_{38} = - \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}
    x39=cos(11π50)isin(11π50)x_{39} = \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}
    x40=cos(11π50)+isin(11π50)x_{40} = \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}
    x41=cos(6π25)isin(6π25)x_{41} = - \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}
    x42=cos(6π25)+isin(6π25)x_{42} = - \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}
    x43=cos(6π25)isin(6π25)x_{43} = \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}
    x44=cos(6π25)+isin(6π25)x_{44} = \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}
    x45=cos(13π50)isin(13π50)x_{45} = - \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}
    x46=cos(13π50)+isin(13π50)x_{46} = - \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}
    x47=cos(13π50)isin(13π50)x_{47} = \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}
    x48=cos(13π50)+isin(13π50)x_{48} = \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}
    x49=cos(7π25)isin(7π25)x_{49} = - \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}
    x50=cos(7π25)+isin(7π25)x_{50} = - \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}
    x51=cos(7π25)isin(7π25)x_{51} = \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}
    x52=cos(7π25)+isin(7π25)x_{52} = \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}
    x53=cos(8π25)isin(8π25)x_{53} = - \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}
    x54=cos(8π25)+isin(8π25)x_{54} = - \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}
    x55=cos(8π25)isin(8π25)x_{55} = \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}
    x56=cos(8π25)+isin(8π25)x_{56} = \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}
    x57=cos(17π50)isin(17π50)x_{57} = - \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}
    x58=cos(17π50)+isin(17π50)x_{58} = - \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}
    x59=cos(17π50)isin(17π50)x_{59} = \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}
    x60=cos(17π50)+isin(17π50)x_{60} = \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}
    x61=cos(9π25)isin(9π25)x_{61} = - \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}
    x62=cos(9π25)+isin(9π25)x_{62} = - \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}
    x63=cos(9π25)isin(9π25)x_{63} = \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}
    x64=cos(9π25)+isin(9π25)x_{64} = \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}
    x65=cos(19π50)isin(19π50)x_{65} = - \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}
    x66=cos(19π50)+isin(19π50)x_{66} = - \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}
    x67=cos(19π50)isin(19π50)x_{67} = \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}
    x68=cos(19π50)+isin(19π50)x_{68} = \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}
    x69=cos(21π50)isin(21π50)x_{69} = - \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}
    x70=cos(21π50)+isin(21π50)x_{70} = - \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}
    x71=cos(21π50)isin(21π50)x_{71} = \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}
    x72=cos(21π50)+isin(21π50)x_{72} = \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}
    x73=cos(11π25)isin(11π25)x_{73} = - \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}
    x74=cos(11π25)+isin(11π25)x_{74} = - \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}
    x75=cos(11π25)isin(11π25)x_{75} = \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}
    x76=cos(11π25)+isin(11π25)x_{76} = \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}
    x77=cos(23π50)isin(23π50)x_{77} = - \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}
    x78=cos(23π50)+isin(23π50)x_{78} = - \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}
    x79=cos(23π50)isin(23π50)x_{79} = \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}
    x80=cos(23π50)+isin(23π50)x_{80} = \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}
    x81=cos(12π25)isin(12π25)x_{81} = - \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}
    x82=cos(12π25)+isin(12π25)x_{82} = - \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}
    x83=cos(12π25)isin(12π25)x_{83} = \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}
    x84=cos(12π25)+isin(12π25)x_{84} = \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}
    x85=14+54i58+58x_{85} = - \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
    x86=14+54+i58+58x_{86} = - \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
    x87=14+54i5858x_{87} = \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
    x88=14+54+i5858x_{88} = \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
    x89=5414i5858x_{89} = - \frac{\sqrt{5}}{4} - \frac{1}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
    x90=5414+i5858x_{90} = - \frac{\sqrt{5}}{4} - \frac{1}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
    x91=54+14i58+58x_{91} = - \frac{\sqrt{5}}{4} + \frac{1}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
    x92=54+14+i58+58x_{92} = - \frac{\sqrt{5}}{4} + \frac{1}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
    x93=5858+i4+5i4x_{93} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + \frac{i}{4} + \frac{\sqrt{5} i}{4}
    x94=58585i4i4x_{94} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} - \frac{\sqrt{5} i}{4} - \frac{i}{4}
    x95=5858+i4+5i4x_{95} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + \frac{i}{4} + \frac{\sqrt{5} i}{4}
    x96=58585i4i4x_{96} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} - \frac{\sqrt{5} i}{4} - \frac{i}{4}
    x97=58+58i4+5i4x_{97} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{4} + \frac{\sqrt{5} i}{4}
    x98=58+585i4+i4x_{98} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i}{4} + \frac{i}{4}
    x99=58+58i4+5i4x_{99} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{i}{4} + \frac{\sqrt{5} i}{4}
    x100=58+585i4+i4x_{100} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} - \frac{\sqrt{5} i}{4} + \frac{i}{4}
    График
    024681012141602e104
    Быстрый ответ [src]
    x1 = -1
    x1=1x_{1} = -1
    x2 = 1
    x2=1x_{2} = 1
                ___________                
               /       ___      /      ___\
              /  5   \/ 5       |1   \/ 5 |
    x3 = -   /   - - -----  + I*|- + -----|
           \/    8     8        \4     4  /
    x3=5858+i(14+54)x_{3} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + i \left(\frac{1}{4} + \frac{\sqrt{5}}{4}\right)
                ___________                  
               /       ___      /        ___\
              /  5   \/ 5       |  1   \/ 5 |
    x4 = -   /   - - -----  + I*|- - - -----|
           \/    8     8        \  4     4  /
    x4=5858+i(5414)x_{4} = - \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + i \left(- \frac{\sqrt{5}}{4} - \frac{1}{4}\right)
              ___________                
             /       ___      /      ___\
            /  5   \/ 5       |1   \/ 5 |
    x5 =   /   - - -----  + I*|- + -----|
         \/    8     8        \4     4  /
    x5=5858+i(14+54)x_{5} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + i \left(\frac{1}{4} + \frac{\sqrt{5}}{4}\right)
              ___________                  
             /       ___      /        ___\
            /  5   \/ 5       |  1   \/ 5 |
    x6 =   /   - - -----  + I*|- - - -----|
         \/    8     8        \  4     4  /
    x6=5858+i(5414)x_{6} = \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}} + i \left(- \frac{\sqrt{5}}{4} - \frac{1}{4}\right)
                ___________                  
               /       ___      /        ___\
              /  5   \/ 5       |  1   \/ 5 |
    x7 = -   /   - + -----  + I*|- - + -----|
           \/    8     8        \  4     4  /
    x7=58+58+i(14+54)x_{7} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + i \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right)
                ___________                
               /       ___      /      ___\
              /  5   \/ 5       |1   \/ 5 |
    x8 = -   /   - + -----  + I*|- - -----|
           \/    8     8        \4     4  /
    x8=58+58+i(1454)x_{8} = - \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + i \left(\frac{1}{4} - \frac{\sqrt{5}}{4}\right)
              ___________                  
             /       ___      /        ___\
            /  5   \/ 5       |  1   \/ 5 |
    x9 =   /   - + -----  + I*|- - + -----|
         \/    8     8        \  4     4  /
    x9=58+58+i(14+54)x_{9} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + i \left(- \frac{1}{4} + \frac{\sqrt{5}}{4}\right)
               ___________                
              /       ___      /      ___\
             /  5   \/ 5       |1   \/ 5 |
    x10 =   /   - + -----  + I*|- - -----|
          \/    8     8        \4     4  /
    x10=58+58+i(1454)x_{10} = \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}} + i \left(\frac{1}{4} - \frac{\sqrt{5}}{4}\right)
    x11 = -I
    x11=ix_{11} = - i
    x12 = I
    x12=ix_{12} = i
               /pi\        /pi\
    x13 = - cos|--| - I*sin|--|
               \50/        \50/
    x13=cos(π50)isin(π50)x_{13} = - \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}
               /pi\        /pi\
    x14 = - cos|--| + I*sin|--|
               \50/        \50/
    x14=cos(π50)+isin(π50)x_{14} = - \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}
                 /pi\      /pi\
    x15 = - I*sin|--| + cos|--|
                 \50/      \50/
    x15=cos(π50)isin(π50)x_{15} = \cos{\left(\frac{\pi}{50} \right)} - i \sin{\left(\frac{\pi}{50} \right)}
               /pi\      /pi\
    x16 = I*sin|--| + cos|--|
               \50/      \50/
    x16=cos(π50)+isin(π50)x_{16} = \cos{\left(\frac{\pi}{50} \right)} + i \sin{\left(\frac{\pi}{50} \right)}
               /pi\        /pi\
    x17 = - cos|--| - I*sin|--|
               \25/        \25/
    x17=cos(π25)isin(π25)x_{17} = - \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}
               /pi\        /pi\
    x18 = - cos|--| + I*sin|--|
               \25/        \25/
    x18=cos(π25)+isin(π25)x_{18} = - \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}
                 /pi\      /pi\
    x19 = - I*sin|--| + cos|--|
                 \25/      \25/
    x19=cos(π25)isin(π25)x_{19} = \cos{\left(\frac{\pi}{25} \right)} - i \sin{\left(\frac{\pi}{25} \right)}
               /pi\      /pi\
    x20 = I*sin|--| + cos|--|
               \25/      \25/
    x20=cos(π25)+isin(π25)x_{20} = \cos{\left(\frac{\pi}{25} \right)} + i \sin{\left(\frac{\pi}{25} \right)}
               /3*pi\        /3*pi\
    x21 = - cos|----| - I*sin|----|
               \ 50 /        \ 50 /
    x21=cos(3π50)isin(3π50)x_{21} = - \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}
               /3*pi\        /3*pi\
    x22 = - cos|----| + I*sin|----|
               \ 50 /        \ 50 /
    x22=cos(3π50)+isin(3π50)x_{22} = - \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}
                 /3*pi\      /3*pi\
    x23 = - I*sin|----| + cos|----|
                 \ 50 /      \ 50 /
    x23=cos(3π50)isin(3π50)x_{23} = \cos{\left(\frac{3 \pi}{50} \right)} - i \sin{\left(\frac{3 \pi}{50} \right)}
               /3*pi\      /3*pi\
    x24 = I*sin|----| + cos|----|
               \ 50 /      \ 50 /
    x24=cos(3π50)+isin(3π50)x_{24} = \cos{\left(\frac{3 \pi}{50} \right)} + i \sin{\left(\frac{3 \pi}{50} \right)}
               /2*pi\        /2*pi\
    x25 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    x25=cos(2π25)isin(2π25)x_{25} = - \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}
               /2*pi\        /2*pi\
    x26 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    x26=cos(2π25)+isin(2π25)x_{26} = - \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}
                 /2*pi\      /2*pi\
    x27 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    x27=cos(2π25)isin(2π25)x_{27} = \cos{\left(\frac{2 \pi}{25} \right)} - i \sin{\left(\frac{2 \pi}{25} \right)}
               /2*pi\      /2*pi\
    x28 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    x28=cos(2π25)+isin(2π25)x_{28} = \cos{\left(\frac{2 \pi}{25} \right)} + i \sin{\left(\frac{2 \pi}{25} \right)}
               /3*pi\        /3*pi\
    x29 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    x29=cos(3π25)isin(3π25)x_{29} = - \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}
               /3*pi\        /3*pi\
    x30 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    x30=cos(3π25)+isin(3π25)x_{30} = - \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}
                 /3*pi\      /3*pi\
    x31 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    x31=cos(3π25)isin(3π25)x_{31} = \cos{\left(\frac{3 \pi}{25} \right)} - i \sin{\left(\frac{3 \pi}{25} \right)}
               /3*pi\      /3*pi\
    x32 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    x32=cos(3π25)+isin(3π25)x_{32} = \cos{\left(\frac{3 \pi}{25} \right)} + i \sin{\left(\frac{3 \pi}{25} \right)}
               /7*pi\        /7*pi\
    x33 = - cos|----| - I*sin|----|
               \ 50 /        \ 50 /
    x33=cos(7π50)isin(7π50)x_{33} = - \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}
               /7*pi\        /7*pi\
    x34 = - cos|----| + I*sin|----|
               \ 50 /        \ 50 /
    x34=cos(7π50)+isin(7π50)x_{34} = - \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}
                 /7*pi\      /7*pi\
    x35 = - I*sin|----| + cos|----|
                 \ 50 /      \ 50 /
    x35=cos(7π50)isin(7π50)x_{35} = \cos{\left(\frac{7 \pi}{50} \right)} - i \sin{\left(\frac{7 \pi}{50} \right)}
               /7*pi\      /7*pi\
    x36 = I*sin|----| + cos|----|
               \ 50 /      \ 50 /
    x36=cos(7π50)+isin(7π50)x_{36} = \cos{\left(\frac{7 \pi}{50} \right)} + i \sin{\left(\frac{7 \pi}{50} \right)}
               /4*pi\        /4*pi\
    x37 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    x37=cos(4π25)isin(4π25)x_{37} = - \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}
               /4*pi\        /4*pi\
    x38 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    x38=cos(4π25)+isin(4π25)x_{38} = - \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}
                 /4*pi\      /4*pi\
    x39 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    x39=cos(4π25)isin(4π25)x_{39} = \cos{\left(\frac{4 \pi}{25} \right)} - i \sin{\left(\frac{4 \pi}{25} \right)}
               /4*pi\      /4*pi\
    x40 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    x40=cos(4π25)+isin(4π25)x_{40} = \cos{\left(\frac{4 \pi}{25} \right)} + i \sin{\left(\frac{4 \pi}{25} \right)}
               /9*pi\        /9*pi\
    x41 = - cos|----| - I*sin|----|
               \ 50 /        \ 50 /
    x41=cos(9π50)isin(9π50)x_{41} = - \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}
               /9*pi\        /9*pi\
    x42 = - cos|----| + I*sin|----|
               \ 50 /        \ 50 /
    x42=cos(9π50)+isin(9π50)x_{42} = - \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}
                 /9*pi\      /9*pi\
    x43 = - I*sin|----| + cos|----|
                 \ 50 /      \ 50 /
    x43=cos(9π50)isin(9π50)x_{43} = \cos{\left(\frac{9 \pi}{50} \right)} - i \sin{\left(\frac{9 \pi}{50} \right)}
               /9*pi\      /9*pi\
    x44 = I*sin|----| + cos|----|
               \ 50 /      \ 50 /
    x44=cos(9π50)+isin(9π50)x_{44} = \cos{\left(\frac{9 \pi}{50} \right)} + i \sin{\left(\frac{9 \pi}{50} \right)}
               /11*pi\        /11*pi\
    x45 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    x45=cos(11π50)isin(11π50)x_{45} = - \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}
               /11*pi\        /11*pi\
    x46 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    x46=cos(11π50)+isin(11π50)x_{46} = - \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}
                 /11*pi\      /11*pi\
    x47 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    x47=cos(11π50)isin(11π50)x_{47} = \cos{\left(\frac{11 \pi}{50} \right)} - i \sin{\left(\frac{11 \pi}{50} \right)}
               /11*pi\      /11*pi\
    x48 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    x48=cos(11π50)+isin(11π50)x_{48} = \cos{\left(\frac{11 \pi}{50} \right)} + i \sin{\left(\frac{11 \pi}{50} \right)}
               /6*pi\        /6*pi\
    x49 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    x49=cos(6π25)isin(6π25)x_{49} = - \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}
               /6*pi\        /6*pi\
    x50 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    x50=cos(6π25)+isin(6π25)x_{50} = - \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}
                 /6*pi\      /6*pi\
    x51 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    x51=cos(6π25)isin(6π25)x_{51} = \cos{\left(\frac{6 \pi}{25} \right)} - i \sin{\left(\frac{6 \pi}{25} \right)}
               /6*pi\      /6*pi\
    x52 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    x52=cos(6π25)+isin(6π25)x_{52} = \cos{\left(\frac{6 \pi}{25} \right)} + i \sin{\left(\frac{6 \pi}{25} \right)}
               /13*pi\        /13*pi\
    x53 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    x53=cos(13π50)isin(13π50)x_{53} = - \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}
               /13*pi\        /13*pi\
    x54 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    x54=cos(13π50)+isin(13π50)x_{54} = - \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}
                 /13*pi\      /13*pi\
    x55 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    x55=cos(13π50)isin(13π50)x_{55} = \cos{\left(\frac{13 \pi}{50} \right)} - i \sin{\left(\frac{13 \pi}{50} \right)}
               /13*pi\      /13*pi\
    x56 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    x56=cos(13π50)+isin(13π50)x_{56} = \cos{\left(\frac{13 \pi}{50} \right)} + i \sin{\left(\frac{13 \pi}{50} \right)}
               /7*pi\        /7*pi\
    x57 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    x57=cos(7π25)isin(7π25)x_{57} = - \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}
               /7*pi\        /7*pi\
    x58 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    x58=cos(7π25)+isin(7π25)x_{58} = - \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}
                 /7*pi\      /7*pi\
    x59 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    x59=cos(7π25)isin(7π25)x_{59} = \cos{\left(\frac{7 \pi}{25} \right)} - i \sin{\left(\frac{7 \pi}{25} \right)}
               /7*pi\      /7*pi\
    x60 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    x60=cos(7π25)+isin(7π25)x_{60} = \cos{\left(\frac{7 \pi}{25} \right)} + i \sin{\left(\frac{7 \pi}{25} \right)}
               /8*pi\        /8*pi\
    x61 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    x61=cos(8π25)isin(8π25)x_{61} = - \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}
               /8*pi\        /8*pi\
    x62 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    x62=cos(8π25)+isin(8π25)x_{62} = - \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}
                 /8*pi\      /8*pi\
    x63 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    x63=cos(8π25)isin(8π25)x_{63} = \cos{\left(\frac{8 \pi}{25} \right)} - i \sin{\left(\frac{8 \pi}{25} \right)}
               /8*pi\      /8*pi\
    x64 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    x64=cos(8π25)+isin(8π25)x_{64} = \cos{\left(\frac{8 \pi}{25} \right)} + i \sin{\left(\frac{8 \pi}{25} \right)}
               /17*pi\        /17*pi\
    x65 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    x65=cos(17π50)isin(17π50)x_{65} = - \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}
               /17*pi\        /17*pi\
    x66 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    x66=cos(17π50)+isin(17π50)x_{66} = - \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}
                 /17*pi\      /17*pi\
    x67 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    x67=cos(17π50)isin(17π50)x_{67} = \cos{\left(\frac{17 \pi}{50} \right)} - i \sin{\left(\frac{17 \pi}{50} \right)}
               /17*pi\      /17*pi\
    x68 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    x68=cos(17π50)+isin(17π50)x_{68} = \cos{\left(\frac{17 \pi}{50} \right)} + i \sin{\left(\frac{17 \pi}{50} \right)}
               /9*pi\        /9*pi\
    x69 = - cos|----| - I*sin|----|
               \ 25 /        \ 25 /
    x69=cos(9π25)isin(9π25)x_{69} = - \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}
               /9*pi\        /9*pi\
    x70 = - cos|----| + I*sin|----|
               \ 25 /        \ 25 /
    x70=cos(9π25)+isin(9π25)x_{70} = - \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}
                 /9*pi\      /9*pi\
    x71 = - I*sin|----| + cos|----|
                 \ 25 /      \ 25 /
    x71=cos(9π25)isin(9π25)x_{71} = \cos{\left(\frac{9 \pi}{25} \right)} - i \sin{\left(\frac{9 \pi}{25} \right)}
               /9*pi\      /9*pi\
    x72 = I*sin|----| + cos|----|
               \ 25 /      \ 25 /
    x72=cos(9π25)+isin(9π25)x_{72} = \cos{\left(\frac{9 \pi}{25} \right)} + i \sin{\left(\frac{9 \pi}{25} \right)}
               /19*pi\        /19*pi\
    x73 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    x73=cos(19π50)isin(19π50)x_{73} = - \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}
               /19*pi\        /19*pi\
    x74 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    x74=cos(19π50)+isin(19π50)x_{74} = - \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}
                 /19*pi\      /19*pi\
    x75 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    x75=cos(19π50)isin(19π50)x_{75} = \cos{\left(\frac{19 \pi}{50} \right)} - i \sin{\left(\frac{19 \pi}{50} \right)}
               /19*pi\      /19*pi\
    x76 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    x76=cos(19π50)+isin(19π50)x_{76} = \cos{\left(\frac{19 \pi}{50} \right)} + i \sin{\left(\frac{19 \pi}{50} \right)}
               /21*pi\        /21*pi\
    x77 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    x77=cos(21π50)isin(21π50)x_{77} = - \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}
               /21*pi\        /21*pi\
    x78 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    x78=cos(21π50)+isin(21π50)x_{78} = - \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}
                 /21*pi\      /21*pi\
    x79 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    x79=cos(21π50)isin(21π50)x_{79} = \cos{\left(\frac{21 \pi}{50} \right)} - i \sin{\left(\frac{21 \pi}{50} \right)}
               /21*pi\      /21*pi\
    x80 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    x80=cos(21π50)+isin(21π50)x_{80} = \cos{\left(\frac{21 \pi}{50} \right)} + i \sin{\left(\frac{21 \pi}{50} \right)}
               /11*pi\        /11*pi\
    x81 = - cos|-----| - I*sin|-----|
               \  25 /        \  25 /
    x81=cos(11π25)isin(11π25)x_{81} = - \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}
               /11*pi\        /11*pi\
    x82 = - cos|-----| + I*sin|-----|
               \  25 /        \  25 /
    x82=cos(11π25)+isin(11π25)x_{82} = - \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}
                 /11*pi\      /11*pi\
    x83 = - I*sin|-----| + cos|-----|
                 \  25 /      \  25 /
    x83=cos(11π25)isin(11π25)x_{83} = \cos{\left(\frac{11 \pi}{25} \right)} - i \sin{\left(\frac{11 \pi}{25} \right)}
               /11*pi\      /11*pi\
    x84 = I*sin|-----| + cos|-----|
               \  25 /      \  25 /
    x84=cos(11π25)+isin(11π25)x_{84} = \cos{\left(\frac{11 \pi}{25} \right)} + i \sin{\left(\frac{11 \pi}{25} \right)}
               /23*pi\        /23*pi\
    x85 = - cos|-----| - I*sin|-----|
               \  50 /        \  50 /
    x85=cos(23π50)isin(23π50)x_{85} = - \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}
               /23*pi\        /23*pi\
    x86 = - cos|-----| + I*sin|-----|
               \  50 /        \  50 /
    x86=cos(23π50)+isin(23π50)x_{86} = - \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}
                 /23*pi\      /23*pi\
    x87 = - I*sin|-----| + cos|-----|
                 \  50 /      \  50 /
    x87=cos(23π50)isin(23π50)x_{87} = \cos{\left(\frac{23 \pi}{50} \right)} - i \sin{\left(\frac{23 \pi}{50} \right)}
               /23*pi\      /23*pi\
    x88 = I*sin|-----| + cos|-----|
               \  50 /      \  50 /
    x88=cos(23π50)+isin(23π50)x_{88} = \cos{\left(\frac{23 \pi}{50} \right)} + i \sin{\left(\frac{23 \pi}{50} \right)}
               /12*pi\        /12*pi\
    x89 = - cos|-----| - I*sin|-----|
               \  25 /        \  25 /
    x89=cos(12π25)isin(12π25)x_{89} = - \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}
               /12*pi\        /12*pi\
    x90 = - cos|-----| + I*sin|-----|
               \  25 /        \  25 /
    x90=cos(12π25)+isin(12π25)x_{90} = - \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}
                 /12*pi\      /12*pi\
    x91 = - I*sin|-----| + cos|-----|
                 \  25 /      \  25 /
    x91=cos(12π25)isin(12π25)x_{91} = \cos{\left(\frac{12 \pi}{25} \right)} - i \sin{\left(\frac{12 \pi}{25} \right)}
               /12*pi\      /12*pi\
    x92 = I*sin|-----| + cos|-----|
               \  25 /      \  25 /
    x92=cos(12π25)+isin(12π25)x_{92} = \cos{\left(\frac{12 \pi}{25} \right)} + i \sin{\left(\frac{12 \pi}{25} \right)}
                               ___________
                  ___         /       ___ 
            1   \/ 5         /  5   \/ 5  
    x93 = - - + ----- - I*  /   - + ----- 
            4     4       \/    8     8   
    x93=14+54i58+58x_{93} = - \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
                               ___________
                  ___         /       ___ 
            1   \/ 5         /  5   \/ 5  
    x94 = - - + ----- + I*  /   - + ----- 
            4     4       \/    8     8   
    x94=14+54+i58+58x_{94} = - \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
                             ___________
                ___         /       ___ 
          1   \/ 5         /  5   \/ 5  
    x95 = - + ----- - I*  /   - - ----- 
          4     4       \/    8     8   
    x95=14+54i5858x_{95} = \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
                             ___________
                ___         /       ___ 
          1   \/ 5         /  5   \/ 5  
    x96 = - + ----- + I*  /   - - ----- 
          4     4       \/    8     8   
    x96=14+54+i5858x_{96} = \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
                               ___________
                  ___         /       ___ 
            1   \/ 5         /  5   \/ 5  
    x97 = - - - ----- - I*  /   - - ----- 
            4     4       \/    8     8   
    x97=5414i5858x_{97} = - \frac{\sqrt{5}}{4} - \frac{1}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
                               ___________
                  ___         /       ___ 
            1   \/ 5         /  5   \/ 5  
    x98 = - - - ----- + I*  /   - - ----- 
            4     4       \/    8     8   
    x98=5414+i5858x_{98} = - \frac{\sqrt{5}}{4} - \frac{1}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}
                             ___________
                ___         /       ___ 
          1   \/ 5         /  5   \/ 5  
    x99 = - - ----- - I*  /   - + ----- 
          4     4       \/    8     8   
    x99=54+14i58+58x_{99} = - \frac{\sqrt{5}}{4} + \frac{1}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
                              ___________
                 ___         /       ___ 
           1   \/ 5         /  5   \/ 5  
    x100 = - - ----- + I*  /   - + ----- 
           4     4       \/    8     8   
    x100=54+14+i58+58x_{100} = - \frac{\sqrt{5}}{4} + \frac{1}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}
    Численный ответ [src]
    x1 = 0.968583161128631 - 0.248689887164855*i
    x2 = 0.770513242775789 + 0.63742398974869*i
    x3 = -0.992114701314478 - 0.125333233564304*i
    x4 = 0.998026728428272 + 0.0627905195293134*i
    x5 = 0.187381314585725 - 0.982287250728689*i
    x6 = 0.982287250728689 - 0.187381314585725*i
    x7 = 0.535826794978997 - 0.844327925502015*i
    x8 = 0.248689887164855 - 0.968583161128631*i
    x9 = -0.951056516295154 - 0.309016994374947*i
    x10 = 0.309016994374947 - 0.951056516295154*i
    x11 = -0.728968627421412 - 0.684547105928689*i
    x12 = -0.63742398974869 + 0.770513242775789*i
    x13 = -0.929776485888251 + 0.368124552684678*i
    x14 = -0.187381314585725 - 0.982287250728689*i
    x15 = 1.0*i
    x16 = -0.309016994374947 - 0.951056516295154*i
    x17 = -0.0627905195293134 - 0.998026728428272*i
    x18 = 0.951056516295154 + 0.309016994374947*i
    x19 = -0.309016994374947 + 0.951056516295154*i
    x20 = -0.982287250728689 - 0.187381314585725*i
    x21 = -0.187381314585725 + 0.982287250728689*i
    x22 = 0.968583161128631 + 0.248689887164855*i
    x23 = 0.876306680043864 + 0.481753674101715*i
    x24 = 0.876306680043864 - 0.481753674101715*i
    x25 = -0.968583161128631 + 0.248689887164855*i
    x26 = 0.248689887164855 + 0.968583161128631*i
    x27 = 0.481753674101715 - 0.876306680043864*i
    x28 = 0.587785252292473 + 0.809016994374947*i
    x29 = -0.951056516295154 + 0.309016994374947*i
    x30 = 0.809016994374947 - 0.587785252292473*i
    x31 = -0.968583161128631 - 0.248689887164855*i
    x32 = -0.992114701314478 + 0.125333233564304*i
    x33 = -0.844327925502015 - 0.535826794978997*i
    x34 = -0.481753674101715 - 0.876306680043864*i
    x35 = 0.90482705246602 + 0.425779291565073*i
    x36 = -1.0*i
    x37 = 0.125333233564304 + 0.992114701314478*i
    x38 = -0.90482705246602 + 0.425779291565073*i
    x39 = 0.929776485888251 - 0.368124552684678*i
    x40 = 0.368124552684678 - 0.929776485888251*i
    x41 = 0.844327925502015 + 0.535826794978997*i
    x42 = 0.368124552684678 + 0.929776485888251*i
    x43 = 0.187381314585725 + 0.982287250728689*i
    x44 = 0.728968627421412 - 0.684547105928689*i
    x45 = -0.876306680043864 - 0.481753674101715*i
    x46 = 0.844327925502015 - 0.535826794978997*i
    x47 = 0.992114701314478 + 0.125333233564304*i
    x48 = -0.368124552684678 + 0.929776485888251*i
    x49 = -0.63742398974869 - 0.770513242775789*i
    x50 = 0.63742398974869 - 0.770513242775789*i
    x51 = 0.0627905195293134 + 0.998026728428272*i
    x52 = -0.998026728428272 + 0.0627905195293134*i
    x53 = 0.587785252292473 - 0.809016994374947*i
    x54 = 0.684547105928689 + 0.728968627421412*i
    x55 = 1.0
    x56 = -0.998026728428272 - 0.0627905195293134*i
    x57 = -0.125333233564304 + 0.992114701314478*i
    x58 = 0.0627905195293134 - 0.998026728428272*i
    x59 = -0.684547105928689 - 0.728968627421412*i
    x60 = -0.481753674101715 + 0.876306680043864*i
    x61 = 0.90482705246602 - 0.425779291565073*i
    x62 = 0.125333233564304 - 0.992114701314478*i
    x63 = -0.809016994374947 - 0.587785252292473*i
    x64 = 0.982287250728689 + 0.187381314585725*i
    x65 = -0.125333233564304 - 0.992114701314478*i
    x66 = 0.63742398974869 + 0.770513242775789*i
    x67 = -0.809016994374947 + 0.587785252292473*i
    x68 = -0.929776485888251 - 0.368124552684678*i
    x69 = -0.770513242775789 - 0.63742398974869*i
    x70 = 0.992114701314478 - 0.125333233564304*i
    x71 = -0.587785252292473 - 0.809016994374947*i
    x72 = 0.728968627421412 + 0.684547105928689*i
    x73 = 0.951056516295154 - 0.309016994374947*i
    x74 = 0.770513242775789 - 0.63742398974869*i
    x75 = 0.309016994374947 + 0.951056516295154*i
    x76 = -0.90482705246602 - 0.425779291565073*i
    x77 = -0.684547105928689 + 0.728968627421412*i
    x78 = 0.684547105928689 - 0.728968627421412*i
    x79 = 0.929776485888251 + 0.368124552684678*i
    x80 = 0.425779291565073 + 0.90482705246602*i
    x81 = -0.535826794978997 + 0.844327925502015*i
    x82 = 0.809016994374947 + 0.587785252292473*i
    x83 = 0.998026728428272 - 0.0627905195293134*i
    x84 = -0.248689887164855 + 0.968583161128631*i
    x85 = -0.587785252292473 + 0.809016994374947*i
    x86 = 0.481753674101715 + 0.876306680043864*i
    x87 = -0.425779291565073 - 0.90482705246602*i
    x88 = -0.770513242775789 + 0.63742398974869*i
    x89 = 0.535826794978997 + 0.844327925502015*i
    x90 = -0.535826794978997 - 0.844327925502015*i
    x91 = -0.728968627421412 + 0.684547105928689*i
    x92 = -0.982287250728689 + 0.187381314585725*i
    x93 = -0.425779291565073 + 0.90482705246602*i
    x94 = -0.0627905195293134 + 0.998026728428272*i
    x95 = -0.248689887164855 - 0.968583161128631*i
    x96 = -0.368124552684678 - 0.929776485888251*i
    x97 = -0.844327925502015 + 0.535826794978997*i
    x98 = -0.876306680043864 + 0.481753674101715*i
    x99 = 0.425779291565073 - 0.90482705246602*i
    x100 = -1.0
    График
    x^100=1 (уравнение) /media/krcore-image-pods/hash/equation/c/7e/c4d52abc4fb57520b258bd84497b2.png