x^3-4 = 0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^3-4 = 0

    Решение

    Вы ввели [src]
     3        
    x  - 4 = 0
    x34=0x^{3} - 4 = 0
    Подробное решение
    Дано уравнение
    x34=0x^{3} - 4 = 0
    Т.к. степень в ур-нии равна = 3 - не содержит чётного числа в числителе, то
    ур-ние будет иметь один действительный корень.
    Извлечём корень 3-й степени из обеих частей ур-ния:
    Получим:
    x33=43\sqrt[3]{x^{3}} = \sqrt[3]{4}
    или
    x=223x = 2^{\frac{2}{3}}
    Раскрываем скобочки в правой части ур-ния
    x = 2^2/3

    Получим ответ: x = 2^(2/3)

    Остальные 2 корня(ей) являются комплексными.
    сделаем замену:
    z=xz = x
    тогда ур-ние будет таким:
    z3=4z^{3} = 4
    Любое комплексное число можно представить так:
    z=reipz = r e^{i p}
    подставляем в уравнение
    r3e3ip=4r^{3} e^{3 i p} = 4
    где
    r=223r = 2^{\frac{2}{3}}
    - модуль комплексного числа
    Подставляем r:
    e3ip=1e^{3 i p} = 1
    Используя формулу Эйлера, найдём корни для p
    isin(3p)+cos(3p)=1i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = 1
    значит
    cos(3p)=1\cos{\left(3 p \right)} = 1
    и
    sin(3p)=0\sin{\left(3 p \right)} = 0
    тогда
    p=2πN3p = \frac{2 \pi N}{3}
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    z1=223z_{1} = 2^{\frac{2}{3}}
    z2=22322233i2z_{2} = - \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}
    z3=2232+2233i2z_{3} = - \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}
    делаем обратную замену
    z=xz = x
    x=zx = z

    Тогда, окончательный ответ:
    x1=223x_{1} = 2^{\frac{2}{3}}
    x2=22322233i2x_{2} = - \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}
    x3=2232+2233i2x_{3} = - \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}
    График
    -12.5-10.0-7.5-5.0-2.50.02.55.07.510.012.515.0-25002500
    Быстрый ответ [src]
          2/3
    x1 = 2   
    x1=223x_{1} = 2^{\frac{2}{3}}
            2/3      2/3   ___
           2      I*2   *\/ 3 
    x2 = - ---- - ------------
            2          2      
    x2=22322233i2x_{2} = - \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}
            2/3      2/3   ___
           2      I*2   *\/ 3 
    x3 = - ---- + ------------
            2          2      
    x3=2232+2233i2x_{3} = - \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}
    Численный ответ [src]
    x1 = 1.5874010519682
    x2 = -0.7937005259841 - 1.3747296369986*i
    x3 = -0.7937005259841 + 1.3747296369986*i
    График
    x^3-4 = 0 (уравнение) /media/krcore-image-pods/hash/equation/9/a6/45e4fcf3d4e6120bcfa5fe1750c8f.png