x^3 + 8 = 0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^3 + 8 = 0

    Решение

    Вы ввели [src]
     3        
    x  + 8 = 0
    x3+8=0x^{3} + 8 = 0
    Подробное решение
    Дано уравнение
    x3+8=0x^{3} + 8 = 0
    Т.к. степень в ур-нии равна = 3 - не содержит чётного числа в числителе, то
    ур-ние будет иметь один действительный корень.
    Извлечём корень 3-й степени из обеих частей ур-ния:
    Получим:
    x33=83\sqrt[3]{x^{3}} = \sqrt[3]{-8}
    или
    x=213x = 2 \sqrt[3]{-1}
    Раскрываем скобочки в правой части ур-ния
    x = -2*1^1/3

    Получим ответ: x = 2*(-1)^(1/3)

    Остальные 2 корня(ей) являются комплексными.
    сделаем замену:
    z=xz = x
    тогда ур-ние будет таким:
    z3=8z^{3} = -8
    Любое комплексное число можно представить так:
    z=reipz = r e^{i p}
    подставляем в уравнение
    r3e3ip=8r^{3} e^{3 i p} = -8
    где
    r=2r = 2
    - модуль комплексного числа
    Подставляем r:
    e3ip=1e^{3 i p} = -1
    Используя формулу Эйлера, найдём корни для p
    isin(3p)+cos(3p)=1i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = -1
    значит
    cos(3p)=1\cos{\left(3 p \right)} = -1
    и
    sin(3p)=0\sin{\left(3 p \right)} = 0
    тогда
    p=2πN3+π3p = \frac{2 \pi N}{3} + \frac{\pi}{3}
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    z1=2z_{1} = -2
    z2=13iz_{2} = 1 - \sqrt{3} i
    z3=1+3iz_{3} = 1 + \sqrt{3} i
    делаем обратную замену
    z=xz = x
    x=zx = z

    Тогда, окончательный ответ:
    x1=2x_{1} = -2
    x2=13ix_{2} = 1 - \sqrt{3} i
    x3=1+3ix_{3} = 1 + \sqrt{3} i
    График
    -17.5-15.0-12.5-10.0-7.5-5.0-2.50.02.55.07.510.0-25002500
    Быстрый ответ [src]
    x1 = -2
    x1=2x_{1} = -2
                 ___
    x2 = 1 - I*\/ 3 
    x2=13ix_{2} = 1 - \sqrt{3} i
                 ___
    x3 = 1 + I*\/ 3 
    x3=1+3ix_{3} = 1 + \sqrt{3} i
    Численный ответ [src]
    x1 = 1.0 + 1.73205080756888*i
    x2 = -2.0
    x3 = 1.0 - 1.73205080756888*i
    График
    x^3 + 8 = 0 (уравнение) /media/krcore-image-pods/hash/equation/9/f1/51c009dbf7f1b2a018e55317112ee.png