x^3+x= 0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^3+x= 0

    Решение

    Вы ввели [src]
     3        
    x  + x = 0
    x3+x=0x^{3} + x = 0
    Подробное решение
    Дано уравнение:
    x3+x=0x^{3} + x = 0
    преобразуем
    Вынесем общий множитель x за скобки
    получим:
    x(x2+1)=0x \left(x^{2} + 1\right) = 0
    тогда:
    x1=0x_{1} = 0
    и также
    получаем ур-ние
    x2+1=0x^{2} + 1 = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x2=Db2ax_{2} = \frac{\sqrt{D} - b}{2 a}
    x3=Db2ax_{3} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=0b = 0
    c=1c = 1
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (1) = -4

    Т.к. D < 0, то уравнение
    не имеет вещественных корней,
    но комплексные корни имеются.
    x2 = (-b + sqrt(D)) / (2*a)

    x3 = (-b - sqrt(D)) / (2*a)

    или
    x2=ix_{2} = i
    x3=ix_{3} = - i
    Получаем окончательный ответ для x^3 + x = 0:
    x1=0x_{1} = 0
    x2=ix_{2} = i
    x3=ix_{3} = - i
    График
    -15.0-12.5-10.0-7.5-5.0-2.50.02.55.07.515.010.012.5-20002000
    Быстрый ответ [src]
    x1 = 0
    x1=0x_{1} = 0
    x2 = -I
    x2=ix_{2} = - i
    x3 = I
    x3=ix_{3} = i
    Численный ответ [src]
    x1 = 0.0
    x2 = 1.0*i
    x3 = -1.0*i
    График
    x^3+x= 0 (уравнение) /media/krcore-image-pods/hash/equation/d/28/a7cb823068528c84da6284d99eea8.png