x^36=6 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^36=6

    Решение

    Вы ввели [src]
     36    
    x   = 6
    x36=6x^{36} = 6
    Подробное решение
    Дано уравнение
    x36=6x^{36} = 6
    Т.к. степень в ур-нии равна = 36 - содержит чётное число 36 в числителе, то
    ур-ние будет иметь два действительных корня.
    Извлечём корень 36-й степени из обеих частей ур-ния:
    Получим:
    x3636=636\sqrt[36]{x^{36}} = \sqrt[36]{6}
    x3636=1636\sqrt[36]{x^{36}} = -1 \sqrt[36]{6}
    или
    x=636x = \sqrt[36]{6}
    x=636x = - \sqrt[36]{6}
    Раскрываем скобочки в правой части ур-ния
    x = 6^1/36

    Получим ответ: x = 6^(1/36)
    Раскрываем скобочки в правой части ур-ния
    x = -6^1/36

    Получим ответ: x = -6^(1/36)
    или
    x1=636x_{1} = - \sqrt[36]{6}
    x2=636x_{2} = \sqrt[36]{6}

    Остальные 34 корня(ей) являются комплексными.
    сделаем замену:
    z=xz = x
    тогда ур-ние будет таким:
    z36=6z^{36} = 6
    Любое комплексное число можно представить так:
    z=reipz = r e^{i p}
    подставляем в уравнение
    r36e36ip=6r^{36} e^{36 i p} = 6
    где
    r=636r = \sqrt[36]{6}
    - модуль комплексного числа
    Подставляем r:
    e36ip=1e^{36 i p} = 1
    Используя формулу Эйлера, найдём корни для p
    isin(36p)+cos(36p)=1i \sin{\left (36 p \right )} + \cos{\left (36 p \right )} = 1
    значит
    cos(36p)=1\cos{\left (36 p \right )} = 1
    и
    sin(36p)=0\sin{\left (36 p \right )} = 0
    тогда
    p=πN18p = \frac{\pi N}{18}
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    z1=636z_{1} = - \sqrt[36]{6}
    z2=636z_{2} = \sqrt[36]{6}
    z3=636iz_{3} = - \sqrt[36]{6} i
    z4=636iz_{4} = \sqrt[36]{6} i
    z5=6362236i231936z_{5} = - \frac{\sqrt[36]{6}}{2} - \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
    z6=6362+236i231936z_{6} = - \frac{\sqrt[36]{6}}{2} + \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
    z7=6362236i231936z_{7} = \frac{\sqrt[36]{6}}{2} - \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
    z8=6362+236i231936z_{8} = \frac{\sqrt[36]{6}}{2} + \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
    z9=236231936636i2z_{9} = - \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} - \frac{\sqrt[36]{6} i}{2}
    z10=236231936+636i2z_{10} = - \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} + \frac{\sqrt[36]{6} i}{2}
    z11=236231936636i2z_{11} = \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} - \frac{\sqrt[36]{6} i}{2}
    z12=236231936+636i2z_{12} = \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} + \frac{\sqrt[36]{6} i}{2}
    z13=636cos(π18)636isin(π18)z_{13} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
    z14=636cos(π18)+636isin(π18)z_{14} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
    z15=636cos(π18)636isin(π18)z_{15} = \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
    z16=636cos(π18)+636isin(π18)z_{16} = \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
    z17=636cos(π9)636isin(π9)z_{17} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
    z18=636cos(π9)+636isin(π9)z_{18} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
    z19=636cos(π9)636isin(π9)z_{19} = \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
    z20=636cos(π9)+636isin(π9)z_{20} = \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
    z21=636cos(2π9)636isin(2π9)z_{21} = - \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
    z22=636cos(2π9)+636isin(2π9)z_{22} = - \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
    z23=636cos(2π9)636isin(2π9)z_{23} = \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
    z24=636cos(2π9)+636isin(2π9)z_{24} = \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
    z25=636cos(5π18)636isin(5π18)z_{25} = - \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
    z26=636cos(5π18)+636isin(5π18)z_{26} = - \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
    z27=636cos(5π18)636isin(5π18)z_{27} = \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
    z28=636cos(5π18)+636isin(5π18)z_{28} = \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
    z29=636cos(7π18)636isin(7π18)z_{29} = - \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
    z30=636cos(7π18)+636isin(7π18)z_{30} = - \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
    z31=636cos(7π18)636isin(7π18)z_{31} = \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
    z32=636cos(7π18)+636isin(7π18)z_{32} = \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
    z33=636cos(4π9)636isin(4π9)z_{33} = - \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
    z34=636cos(4π9)+636isin(4π9)z_{34} = - \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
    z35=636cos(4π9)636isin(4π9)z_{35} = \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
    z36=636cos(4π9)+636isin(4π9)z_{36} = \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
    делаем обратную замену
    z=xz = x
    x=zx = z

    Тогда, окончательный ответ:
    x1=636x_{1} = - \sqrt[36]{6}
    x2=636x_{2} = \sqrt[36]{6}
    x3=636ix_{3} = - \sqrt[36]{6} i
    x4=636ix_{4} = \sqrt[36]{6} i
    x5=6362236i231936x_{5} = - \frac{\sqrt[36]{6}}{2} - \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
    x6=6362+236i231936x_{6} = - \frac{\sqrt[36]{6}}{2} + \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
    x7=6362236i231936x_{7} = \frac{\sqrt[36]{6}}{2} - \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
    x8=6362+236i231936x_{8} = \frac{\sqrt[36]{6}}{2} + \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
    x9=236231936636i2x_{9} = - \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} - \frac{\sqrt[36]{6} i}{2}
    x10=236231936+636i2x_{10} = - \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} + \frac{\sqrt[36]{6} i}{2}
    x11=236231936636i2x_{11} = \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} - \frac{\sqrt[36]{6} i}{2}
    x12=236231936+636i2x_{12} = \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} + \frac{\sqrt[36]{6} i}{2}
    x13=636cos(π18)636isin(π18)x_{13} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
    x14=636cos(π18)+636isin(π18)x_{14} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
    x15=636cos(π18)636isin(π18)x_{15} = \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
    x16=636cos(π18)+636isin(π18)x_{16} = \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
    x17=636cos(π9)636isin(π9)x_{17} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
    x18=636cos(π9)+636isin(π9)x_{18} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
    x19=636cos(π9)636isin(π9)x_{19} = \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
    x20=636cos(π9)+636isin(π9)x_{20} = \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
    x21=636cos(2π9)636isin(2π9)x_{21} = - \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
    x22=636cos(2π9)+636isin(2π9)x_{22} = - \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
    x23=636cos(2π9)636isin(2π9)x_{23} = \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
    x24=636cos(2π9)+636isin(2π9)x_{24} = \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
    x25=636cos(5π18)636isin(5π18)x_{25} = - \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
    x26=636cos(5π18)+636isin(5π18)x_{26} = - \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
    x27=636cos(5π18)636isin(5π18)x_{27} = \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
    x28=636cos(5π18)+636isin(5π18)x_{28} = \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
    x29=636cos(7π18)636isin(7π18)x_{29} = - \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
    x30=636cos(7π18)+636isin(7π18)x_{30} = - \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
    x31=636cos(7π18)636isin(7π18)x_{31} = \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
    x32=636cos(7π18)+636isin(7π18)x_{32} = \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
    x33=636cos(4π9)636isin(4π9)x_{33} = - \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
    x34=636cos(4π9)+636isin(4π9)x_{34} = - \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
    x35=636cos(4π9)636isin(4π9)x_{35} = \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
    x36=636cos(4π9)+636isin(4π9)x_{36} = \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
    График
    024681012141605e37
    Быстрый ответ [src]
          36___
    x1 = -\/ 6 
    x1=636x_{1} = - \sqrt[36]{6}
         36___
    x2 = \/ 6 
    x2=636x_{2} = \sqrt[36]{6}
            36___
    x3 = -I*\/ 6 
    x3=636ix_{3} = - \sqrt[36]{6} i
           36___
    x4 = I*\/ 6 
    x4=636ix_{4} = \sqrt[36]{6} i
                            19
                            --
           36___     36___  36
           \/ 6    I*\/ 2 *3  
    x5 = - ----- - -----------
             2          2     
    x5=6362236i231936x_{5} = - \frac{\sqrt[36]{6}}{2} - \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
                            19
                            --
           36___     36___  36
           \/ 6    I*\/ 2 *3  
    x6 = - ----- + -----------
             2          2     
    x6=6362+236i231936x_{6} = - \frac{\sqrt[36]{6}}{2} + \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
                          19
                          --
         36___     36___  36
         \/ 6    I*\/ 2 *3  
    x7 = ----- - -----------
           2          2     
    x7=6362236i231936x_{7} = \frac{\sqrt[36]{6}}{2} - \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
                          19
                          --
         36___     36___  36
         \/ 6    I*\/ 2 *3  
    x8 = ----- + -----------
           2          2     
    x8=6362+236i231936x_{8} = \frac{\sqrt[36]{6}}{2} + \frac{\sqrt[36]{2} i}{2} 3^{\frac{19}{36}}
                            19
                            --
             36___   36___  36
           I*\/ 6    \/ 2 *3  
    x9 = - ------- - ---------
              2          2    
    x9=236231936636i2x_{9} = - \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} - \frac{\sqrt[36]{6} i}{2}
                           19
                           --
            36___   36___  36
          I*\/ 6    \/ 2 *3  
    x10 = ------- - ---------
             2          2    
    x10=236231936+636i2x_{10} = - \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} + \frac{\sqrt[36]{6} i}{2}
                 19          
                 --          
          36___  36     36___
          \/ 2 *3     I*\/ 6 
    x11 = --------- - -------
              2          2   
    x11=236231936636i2x_{11} = \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} - \frac{\sqrt[36]{6} i}{2}
                           19
                           --
            36___   36___  36
          I*\/ 6    \/ 2 *3  
    x12 = ------- + ---------
             2          2    
    x12=236231936+636i2x_{12} = \frac{\sqrt[36]{2}}{2} 3^{\frac{19}{36}} + \frac{\sqrt[36]{6} i}{2}
            36___    /pi\     36___    /pi\
    x13 = - \/ 6 *cos|--| - I*\/ 6 *sin|--|
                     \18/              \18/
    x13=636cos(π18)636isin(π18)x_{13} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
            36___    /pi\     36___    /pi\
    x14 = - \/ 6 *cos|--| + I*\/ 6 *sin|--|
                     \18/              \18/
    x14=636cos(π18)+636isin(π18)x_{14} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
          36___    /pi\     36___    /pi\
    x15 = \/ 6 *cos|--| - I*\/ 6 *sin|--|
                   \18/              \18/
    x15=636cos(π18)636isin(π18)x_{15} = \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
          36___    /pi\     36___    /pi\
    x16 = \/ 6 *cos|--| + I*\/ 6 *sin|--|
                   \18/              \18/
    x16=636cos(π18)+636isin(π18)x_{16} = \sqrt[36]{6} \cos{\left (\frac{\pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{18} \right )}
            36___    /pi\     36___    /pi\
    x17 = - \/ 6 *cos|--| - I*\/ 6 *sin|--|
                     \9 /              \9 /
    x17=636cos(π9)636isin(π9)x_{17} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
            36___    /pi\     36___    /pi\
    x18 = - \/ 6 *cos|--| + I*\/ 6 *sin|--|
                     \9 /              \9 /
    x18=636cos(π9)+636isin(π9)x_{18} = - \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
          36___    /pi\     36___    /pi\
    x19 = \/ 6 *cos|--| - I*\/ 6 *sin|--|
                   \9 /              \9 /
    x19=636cos(π9)636isin(π9)x_{19} = \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
          36___    /pi\     36___    /pi\
    x20 = \/ 6 *cos|--| + I*\/ 6 *sin|--|
                   \9 /              \9 /
    x20=636cos(π9)+636isin(π9)x_{20} = \sqrt[36]{6} \cos{\left (\frac{\pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{\pi}{9} \right )}
            36___    /2*pi\     36___    /2*pi\
    x21 = - \/ 6 *cos|----| - I*\/ 6 *sin|----|
                     \ 9  /              \ 9  /
    x21=636cos(2π9)636isin(2π9)x_{21} = - \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
            36___    /2*pi\     36___    /2*pi\
    x22 = - \/ 6 *cos|----| + I*\/ 6 *sin|----|
                     \ 9  /              \ 9  /
    x22=636cos(2π9)+636isin(2π9)x_{22} = - \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
          36___    /2*pi\     36___    /2*pi\
    x23 = \/ 6 *cos|----| - I*\/ 6 *sin|----|
                   \ 9  /              \ 9  /
    x23=636cos(2π9)636isin(2π9)x_{23} = \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
          36___    /2*pi\     36___    /2*pi\
    x24 = \/ 6 *cos|----| + I*\/ 6 *sin|----|
                   \ 9  /              \ 9  /
    x24=636cos(2π9)+636isin(2π9)x_{24} = \sqrt[36]{6} \cos{\left (\frac{2 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{2 \pi}{9} \right )}
            36___    /5*pi\     36___    /5*pi\
    x25 = - \/ 6 *cos|----| - I*\/ 6 *sin|----|
                     \ 18 /              \ 18 /
    x25=636cos(5π18)636isin(5π18)x_{25} = - \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
            36___    /5*pi\     36___    /5*pi\
    x26 = - \/ 6 *cos|----| + I*\/ 6 *sin|----|
                     \ 18 /              \ 18 /
    x26=636cos(5π18)+636isin(5π18)x_{26} = - \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
          36___    /5*pi\     36___    /5*pi\
    x27 = \/ 6 *cos|----| - I*\/ 6 *sin|----|
                   \ 18 /              \ 18 /
    x27=636cos(5π18)636isin(5π18)x_{27} = \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
          36___    /5*pi\     36___    /5*pi\
    x28 = \/ 6 *cos|----| + I*\/ 6 *sin|----|
                   \ 18 /              \ 18 /
    x28=636cos(5π18)+636isin(5π18)x_{28} = \sqrt[36]{6} \cos{\left (\frac{5 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{5 \pi}{18} \right )}
            36___    /7*pi\     36___    /7*pi\
    x29 = - \/ 6 *cos|----| - I*\/ 6 *sin|----|
                     \ 18 /              \ 18 /
    x29=636cos(7π18)636isin(7π18)x_{29} = - \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
            36___    /7*pi\     36___    /7*pi\
    x30 = - \/ 6 *cos|----| + I*\/ 6 *sin|----|
                     \ 18 /              \ 18 /
    x30=636cos(7π18)+636isin(7π18)x_{30} = - \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
          36___    /7*pi\     36___    /7*pi\
    x31 = \/ 6 *cos|----| - I*\/ 6 *sin|----|
                   \ 18 /              \ 18 /
    x31=636cos(7π18)636isin(7π18)x_{31} = \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} - \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
          36___    /7*pi\     36___    /7*pi\
    x32 = \/ 6 *cos|----| + I*\/ 6 *sin|----|
                   \ 18 /              \ 18 /
    x32=636cos(7π18)+636isin(7π18)x_{32} = \sqrt[36]{6} \cos{\left (\frac{7 \pi}{18} \right )} + \sqrt[36]{6} i \sin{\left (\frac{7 \pi}{18} \right )}
            36___    /4*pi\     36___    /4*pi\
    x33 = - \/ 6 *cos|----| - I*\/ 6 *sin|----|
                     \ 9  /              \ 9  /
    x33=636cos(4π9)636isin(4π9)x_{33} = - \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
            36___    /4*pi\     36___    /4*pi\
    x34 = - \/ 6 *cos|----| + I*\/ 6 *sin|----|
                     \ 9  /              \ 9  /
    x34=636cos(4π9)+636isin(4π9)x_{34} = - \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
          36___    /4*pi\     36___    /4*pi\
    x35 = \/ 6 *cos|----| - I*\/ 6 *sin|----|
                   \ 9  /              \ 9  /
    x35=636cos(4π9)636isin(4π9)x_{35} = \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} - \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
          36___    /4*pi\     36___    /4*pi\
    x36 = \/ 6 *cos|----| + I*\/ 6 *sin|----|
                   \ 9  /              \ 9  /
    x36=636cos(4π9)+636isin(4π9)x_{36} = \sqrt[36]{6} \cos{\left (\frac{4 \pi}{9} \right )} + \sqrt[36]{6} i \sin{\left (\frac{4 \pi}{9} \right )}
    Численный ответ [src]
    x1 = -1.03506296944 - 0.182509528244*i
    x2 = -0.359473596826 - 0.98764559017*i
    x3 = -0.182509528244 - 1.03506296944*i
    x4 = 0.98764559017 + 0.359473596826*i
    x5 = -0.67558937261 - 0.805136061926*i
    x6 = 1.03506296944 + 0.182509528244*i
    x7 = -0.91021909942 + 0.525515242071*i
    x8 = 0.805136061926 - 0.67558937261*i
    x9 = -0.359473596826 + 0.98764559017*i
    x10 = 0.67558937261 - 0.805136061926*i
    x11 = -0.67558937261 + 0.805136061926*i
    x12 = -0.805136061926 - 0.67558937261*i
    x13 = -1.05103048414*i
    x14 = 0.182509528244 - 1.03506296944*i
    x15 = -0.805136061926 + 0.67558937261*i
    x16 = 0.805136061926 + 0.67558937261*i
    x17 = 1.03506296944 - 0.182509528244*i
    x18 = -0.91021909942 - 0.525515242071*i
    x19 = 0.525515242071 + 0.91021909942*i
    x20 = 0.359473596826 - 0.98764559017*i
    x21 = -0.182509528244 + 1.03506296944*i
    x22 = 1.05103048414*i
    x23 = -1.03506296944 + 0.182509528244*i
    x24 = -1.05103048414000
    x25 = 0.359473596826 + 0.98764559017*i
    x26 = 0.91021909942 - 0.525515242071*i
    x27 = 0.525515242071 - 0.91021909942*i
    x28 = 0.182509528244 + 1.03506296944*i
    x29 = 0.98764559017 - 0.359473596826*i
    x30 = 0.91021909942 + 0.525515242071*i
    x31 = -0.98764559017 + 0.359473596826*i
    x32 = -0.525515242071 + 0.91021909942*i
    x33 = 1.05103048414000
    x34 = 0.67558937261 + 0.805136061926*i
    x35 = -0.98764559017 - 0.359473596826*i
    x36 = -0.525515242071 - 0.91021909942*i
    График
    x^36=6 (уравнение) /media/krcore-image-pods/411e/8303/5697/86fe/im.png