Подробное решение
Дано уравнение
$$x^{8} + 1 = 0$$
Т.к. степень в ур-нии равна = 8 и свободный член = -1 < 0,
зн. действительных решений у соотв. ур-ния не существует
Остальные 8 корня(ей) являются комплексными.
сделаем замену:
$$z = x$$
тогда ур-ние будет таким:
$$z^{8} = -1$$
Любое комплексное число можно представить так:
$$z = r e^{i p}$$
подставляем в уравнение
$$r^{8} e^{8 i p} = -1$$
где
$$r = 1$$
- модуль комплексного числа
Подставляем r:
$$e^{8 i p} = -1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left(8 p \right)} + \cos{\left(8 p \right)} = -1$$
значит
$$\cos{\left(8 p \right)} = -1$$
и
$$\sin{\left(8 p \right)} = 0$$
тогда
$$p = \frac{\pi N}{4} + \frac{\pi}{8}$$
где N=0,1,2,3,...
Перебирая значения N и подставив p в формулу для z
Значит, решением будет для z:
$$z_{1} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$z_{2} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$z_{3} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$z_{4} = \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$z_{5} = - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$z_{6} = \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
$$z_{7} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$z_{8} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
делаем обратную замену
$$z = x$$
$$x = z$$
Тогда, окончательный ответ:
$$x_{1} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$x_{2} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$x_{3} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$x_{4} = \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$x_{5} = - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$x_{6} = \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
$$x_{7} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$x_{8} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
___________ ___________
/ ___ / ___
/ 1 \/ 2 / 1 \/ 2
x1 = - / - - ----- + I* / - + -----
\/ 2 4 \/ 2 4
$$x_{1} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
___________ ___________
/ ___ / ___
/ 1 \/ 2 / 1 \/ 2
x2 = / - - ----- - I* / - + -----
\/ 2 4 \/ 2 4
$$x_{2} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
___________ ___________
/ ___ / ___
/ 1 \/ 2 / 1 \/ 2
x3 = - / - + ----- - I* / - - -----
\/ 2 4 \/ 2 4
$$x_{3} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
___________ ___________
/ ___ / ___
/ 1 \/ 2 / 1 \/ 2
x4 = / - + ----- + I* / - - -----
\/ 2 4 \/ 2 4
$$x_{4} = \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2
|\/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - + ----- \/ 2 * / - - -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x5 = I*|---------------------- + ----------------------| + ---------------------- - ----------------------
\ 2 2 / 2 2
$$x_{5} = - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(\frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2
|\/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - - ----- \/ 2 * / - + -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x6 = I*|---------------------- - ----------------------| + ---------------------- + ----------------------
\ 2 2 / 2 2
$$x_{6} = \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2
|\/ 2 * / - + ----- \/ 2 * / - - ----- | \/ 2 * / - - ----- \/ 2 * / - + -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x7 = I*|---------------------- - ----------------------| - ---------------------- - ----------------------
\ 2 2 / 2 2
$$x_{7} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ / 1 \/ 2 ___ / 1 \/ 2 | ___ / 1 \/ 2 ___ / 1 \/ 2
| \/ 2 * / - - ----- \/ 2 * / - + ----- | \/ 2 * / - - ----- \/ 2 * / - + -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x8 = I*|- ---------------------- - ----------------------| + ---------------------- - ----------------------
\ 2 2 / 2 2
$$x_{8} = - \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)$$
x1 = 0.923879532511287 - 0.38268343236509*i
x2 = 0.923879532511287 + 0.38268343236509*i
x3 = -0.38268343236509 - 0.923879532511287*i
x4 = 0.38268343236509 - 0.923879532511287*i
x5 = -0.923879532511287 - 0.38268343236509*i
x6 = 0.38268343236509 + 0.923879532511287*i
x7 = -0.38268343236509 + 0.923879532511287*i
x8 = -0.923879532511287 + 0.38268343236509*i