Подробное решение
Дано уравнение
$$x^{8} = -16$$
Т.к. степень в ур-нии равна = 8 и свободный член = -16 < 0,
зн. действительных решений у соотв. ур-ния не существует
Остальные 8 корня(ей) являются комплексными.
сделаем замену:
$$z = x$$
тогда ур-ние будет таким:
$$z^{8} = -16$$
Любое комплексное число можно представить так:
$$z = r e^{i p}$$
подставляем в уравнение
$$r^{8} e^{8 i p} = -16$$
где
$$r = \sqrt{2}$$
- модуль комплексного числа
Подставляем r:
$$e^{8 i p} = -1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left(8 p \right)} + \cos{\left(8 p \right)} = -1$$
значит
$$\cos{\left(8 p \right)} = -1$$
и
$$\sin{\left(8 p \right)} = 0$$
тогда
$$p = \frac{\pi N}{4} + \frac{\pi}{8}$$
где N=0,1,2,3,...
Перебирая значения N и подставив p в формулу для z
Значит, решением будет для z:
$$z_{1} = - \sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$z_{2} = \sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$z_{3} = - \sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$z_{4} = \sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$z_{5} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$z_{6} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$z_{7} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$z_{8} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
делаем обратную замену
$$z = x$$
$$x = z$$
Тогда, окончательный ответ:
$$x_{1} = - \sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$x_{2} = \sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$x_{3} = - \sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$x_{4} = \sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$x_{5} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$x_{6} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$x_{7} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$x_{8} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
___________ ___________
/ ___ / ___
___ / 1 \/ 2 ___ / 1 \/ 2
x1 = - \/ 2 * / - - ----- + I*\/ 2 * / - + -----
\/ 2 4 \/ 2 4
$$x_{1} = - \sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
___________ ___________
/ ___ / ___
___ / 1 \/ 2 ___ / 1 \/ 2
x2 = \/ 2 * / - - ----- - I*\/ 2 * / - + -----
\/ 2 4 \/ 2 4
$$x_{2} = \sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
___________ ___________
/ ___ / ___
___ / 1 \/ 2 ___ / 1 \/ 2
x3 = - \/ 2 * / - + ----- - I*\/ 2 * / - - -----
\/ 2 4 \/ 2 4
$$x_{3} = - \sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
___________ ___________
/ ___ / ___
___ / 1 \/ 2 ___ / 1 \/ 2
x4 = \/ 2 * / - + ----- + I*\/ 2 * / - - -----
\/ 2 4 \/ 2 4
$$x_{4} = \sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
___________ ___________ / ___________ ___________\
/ ___ / ___ | / ___ / ___ |
/ 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 |
x5 = / - + ----- - / - - ----- + I*| / - - ----- + / - + ----- |
\/ 2 4 \/ 2 4 \\/ 2 4 \/ 2 4 /
$$x_{5} = - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \left(\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right)$$
___________ ___________ / ___________ ___________\
/ ___ / ___ | / ___ / ___ |
/ 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 |
x6 = / - - ----- + / - + ----- + I*| / - - ----- - / - + ----- |
\/ 2 4 \/ 2 4 \\/ 2 4 \/ 2 4 /
$$x_{6} = \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right)$$
___________ ___________ / ___________ ___________\
/ ___ / ___ | / ___ / ___ |
/ 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 |
x7 = - / - - ----- - / - + ----- + I*| / - + ----- - / - - ----- |
\/ 2 4 \/ 2 4 \\/ 2 4 \/ 2 4 /
$$x_{7} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \left(- \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right)$$
___________ ___________ / ___________ ___________\
/ ___ / ___ | / ___ / ___ |
/ 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 |
x8 = / - - ----- - / - + ----- + I*|- / - - ----- - / - + ----- |
\/ 2 4 \/ 2 4 \ \/ 2 4 \/ 2 4 /
$$x_{8} = - \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right)$$
Сумма и произведение корней
[src] ___________ ___________ ___________ ___________ ___________ ___________ ___________ ___________ ___________ ___________ / ___________ ___________\ ___________ ___________ / ___________ ___________\ ___________ ___________ / ___________ ___________\ ___________ ___________ / ___________ ___________\
/ ___ / ___ / ___ / ___ / ___ / ___ / ___ / ___ / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ |
___ / 1 \/ 2 ___ / 1 \/ 2 ___ / 1 \/ 2 ___ / 1 \/ 2 ___ / 1 \/ 2 ___ / 1 \/ 2 ___ / 1 \/ 2 ___ / 1 \/ 2 / 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 |
- \/ 2 * / - - ----- + I*\/ 2 * / - + ----- + \/ 2 * / - - ----- - I*\/ 2 * / - + ----- + - \/ 2 * / - + ----- - I*\/ 2 * / - - ----- + \/ 2 * / - + ----- + I*\/ 2 * / - - ----- + / - + ----- - / - - ----- + I*| / - - ----- + / - + ----- | + / - - ----- + / - + ----- + I*| / - - ----- - / - + ----- | + - / - - ----- - / - + ----- + I*| / - + ----- - / - - ----- | + / - - ----- - / - + ----- + I*|- / - - ----- - / - + ----- |
\/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \\/ 2 4 \/ 2 4 / \/ 2 4 \/ 2 4 \\/ 2 4 \/ 2 4 / \/ 2 4 \/ 2 4 \\/ 2 4 \/ 2 4 / \/ 2 4 \/ 2 4 \ \/ 2 4 \/ 2 4 /
$$\left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right)\right) + \left(\left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \left(- \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right)\right) + \left(\left(\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right)\right) + \left(\left(\left(\left(- \sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) + \left(\left(\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) + \left(- \sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right)\right)\right) + \left(\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right)\right) + \left(- \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \left(\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right)\right)\right)\right)\right)$$
/ ___________ ___________\ / ___________ ___________\ / ___________ ___________\ / ___________ ___________\
| / ___ / ___ | | / ___ / ___ | | / ___ / ___ | | / ___ / ___ |
| / 1 \/ 2 / 1 \/ 2 | | / 1 \/ 2 / 1 \/ 2 | | / 1 \/ 2 / 1 \/ 2 | | / 1 \/ 2 / 1 \/ 2 |
I*| / - - ----- + / - + ----- | + I*| / - - ----- - / - + ----- | + I*| / - + ----- - / - - ----- | + I*|- / - - ----- - / - + ----- |
\\/ 2 4 \/ 2 4 / \\/ 2 4 \/ 2 4 / \\/ 2 4 \/ 2 4 / \ \/ 2 4 \/ 2 4 /
$$i \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) + i \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) + i \left(- \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) + i \left(\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right)$$
/ ___________ ___________\ / ___________ ___________\ / ___________ ___________\ / ___________ ___________\ / ___________ ___________ / ___________ ___________\\ / ___________ ___________ / ___________ ___________\\ / ___________ ___________ / ___________ ___________\\ / ___________ ___________ / ___________ ___________\\
| / ___ / ___ | | / ___ / ___ | | / ___ / ___ | | / ___ / ___ | | / ___ / ___ | / ___ / ___ || | / ___ / ___ | / ___ / ___ || | / ___ / ___ | / ___ / ___ || | / ___ / ___ | / ___ / ___ ||
| ___ / 1 \/ 2 ___ / 1 \/ 2 | | ___ / 1 \/ 2 ___ / 1 \/ 2 | | ___ / 1 \/ 2 ___ / 1 \/ 2 | | ___ / 1 \/ 2 ___ / 1 \/ 2 | | / 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 || | / 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 || | / 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 || | / 1 \/ 2 / 1 \/ 2 | / 1 \/ 2 / 1 \/ 2 ||
|- \/ 2 * / - - ----- + I*\/ 2 * / - + ----- |*|\/ 2 * / - - ----- - I*\/ 2 * / - + ----- |*|- \/ 2 * / - + ----- - I*\/ 2 * / - - ----- |*|\/ 2 * / - + ----- + I*\/ 2 * / - - ----- |*| / - + ----- - / - - ----- + I*| / - - ----- + / - + ----- ||*| / - - ----- + / - + ----- + I*| / - - ----- - / - + ----- ||*|- / - - ----- - / - + ----- + I*| / - + ----- - / - - ----- ||*| / - - ----- - / - + ----- + I*|- / - - ----- - / - + ----- ||
\ \/ 2 4 \/ 2 4 / \ \/ 2 4 \/ 2 4 / \ \/ 2 4 \/ 2 4 / \ \/ 2 4 \/ 2 4 / \\/ 2 4 \/ 2 4 \\/ 2 4 \/ 2 4 // \\/ 2 4 \/ 2 4 \\/ 2 4 \/ 2 4 // \ \/ 2 4 \/ 2 4 \\/ 2 4 \/ 2 4 // \\/ 2 4 \/ 2 4 \ \/ 2 4 \/ 2 4 //
$$\left(- \sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) \left(\sqrt{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt{2} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) \left(- \sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) \left(\sqrt{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) \left(- \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \left(\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right)\right) \left(\sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + i \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right)\right) \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \left(- \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right)\right) \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + i \left(- \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right)\right)$$
x1 = -0.541196100146197 - 1.30656296487638*i
x2 = 1.30656296487638 - 0.541196100146197*i
x3 = 0.541196100146197 + 1.30656296487638*i
x4 = 1.30656296487638 + 0.541196100146197*i
x5 = 0.541196100146197 - 1.30656296487638*i
x6 = -0.541196100146197 + 1.30656296487638*i
x7 = -1.30656296487638 - 0.541196100146197*i
x8 = -1.30656296487638 + 0.541196100146197*i