Подробное решение
Дано уравнение
$$x^{8} = -3$$
Т.к. степень в ур-нии равна = 8 и свободный член = -3 < 0,
зн. действительных решений у соотв. ур-ния не существует
Остальные 8 корня(ей) являются комплексными.
сделаем замену:
$$z = x$$
тогда ур-ние будет таким:
$$z^{8} = -3$$
Любое комплексное число можно представить так:
$$z = r e^{i p}$$
подставляем в уравнение
$$r^{8} e^{8 i p} = -3$$
где
$$r = \sqrt[8]{3}$$
- модуль комплексного числа
Подставляем r:
$$e^{8 i p} = -1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left(8 p \right)} + \cos{\left(8 p \right)} = -1$$
значит
$$\cos{\left(8 p \right)} = -1$$
и
$$\sin{\left(8 p \right)} = 0$$
тогда
$$p = \frac{\pi N}{4} + \frac{\pi}{8}$$
где N=0,1,2,3,...
Перебирая значения N и подставив p в формулу для z
Значит, решением будет для z:
$$z_{1} = - \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$z_{2} = \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$z_{3} = - \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$z_{4} = \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$z_{5} = - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$z_{6} = \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
$$z_{7} = - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$z_{8} = - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
делаем обратную замену
$$z = x$$
$$x = z$$
Тогда, окончательный ответ:
$$x_{1} = - \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$x_{2} = \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
$$x_{3} = - \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$x_{4} = \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$x_{5} = - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$x_{6} = \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
$$x_{7} = - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$x_{8} = - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
___________ ___________
/ ___ / ___
8 ___ / 1 \/ 2 8 ___ / 1 \/ 2
x1 = - \/ 3 * / - - ----- + I*\/ 3 * / - + -----
\/ 2 4 \/ 2 4
$$x_{1} = - \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
___________ ___________
/ ___ / ___
8 ___ / 1 \/ 2 8 ___ / 1 \/ 2
x2 = \/ 3 * / - - ----- - I*\/ 3 * / - + -----
\/ 2 4 \/ 2 4
$$x_{2} = \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}$$
___________ ___________
/ ___ / ___
8 ___ / 1 \/ 2 8 ___ / 1 \/ 2
x3 = - \/ 3 * / - + ----- - I*\/ 3 * / - - -----
\/ 2 4 \/ 2 4
$$x_{3} = - \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
___________ ___________
/ ___ / ___
8 ___ / 1 \/ 2 8 ___ / 1 \/ 2
x4 = \/ 3 * / - + ----- + I*\/ 3 * / - - -----
\/ 2 4 \/ 2 4
$$x_{4} = \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2
|\/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 *\/ 3 * / - + ----- \/ 2 *\/ 3 * / - - -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x5 = I*|---------------------------- + ----------------------------| + ---------------------------- - ----------------------------
\ 2 2 / 2 2
$$x_{5} = - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(\frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2
|\/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x6 = I*|---------------------------- - ----------------------------| + ---------------------------- + ----------------------------
\ 2 2 / 2 2
$$x_{6} = \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2
|\/ 2 *\/ 3 * / - + ----- \/ 2 *\/ 3 * / - - ----- | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x7 = I*|---------------------------- - ----------------------------| - ---------------------------- - ----------------------------
\ 2 2 / 2 2
$$x_{7} = - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2
| \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
x8 = I*|- ---------------------------- - ----------------------------| + ---------------------------- - ----------------------------
\ 2 2 / 2 2
$$x_{8} = - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)$$
Сумма и произведение корней
[src] / ___________ ___________\ ___________ ___________ / ___________ ___________\ ___________ ___________ / ___________ ___________\ ___________ ___________ / ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___
___________ ___________ ___________ ___________ ___________ ___________ ___________ ___________ | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2
/ ___ / ___ / ___ / ___ / ___ / ___ / ___ / ___ |\/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 *\/ 3 * / - + ----- \/ 2 *\/ 3 * / - - ----- |\/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- |\/ 2 *\/ 3 * / - + ----- \/ 2 *\/ 3 * / - - ----- | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + -----
8 ___ / 1 \/ 2 8 ___ / 1 \/ 2 8 ___ / 1 \/ 2 8 ___ / 1 \/ 2 8 ___ / 1 \/ 2 8 ___ / 1 \/ 2 8 ___ / 1 \/ 2 8 ___ / 1 \/ 2 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
0 + - \/ 3 * / - - ----- + I*\/ 3 * / - + ----- + \/ 3 * / - - ----- - I*\/ 3 * / - + ----- + - \/ 3 * / - + ----- - I*\/ 3 * / - - ----- + \/ 3 * / - + ----- + I*\/ 3 * / - - ----- + I*|---------------------------- + ----------------------------| + ---------------------------- - ---------------------------- + I*|---------------------------- - ----------------------------| + ---------------------------- + ---------------------------- + I*|---------------------------- - ----------------------------| - ---------------------------- - ---------------------------- + I*|- ---------------------------- - ----------------------------| + ---------------------------- - ----------------------------
\/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \ 2 2 / 2 2 \ 2 2 / 2 2 \ 2 2 / 2 2 \ 2 2 / 2 2
$$\left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right) - \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - i \left(\frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right) - i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right) - i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right)$$
/ ___________ ___________\ / ___________ ___________\ / ___________ ___________\ / ___________ ___________\
| / ___ / ___ | | / ___ / ___ | | / ___ / ___ | | / ___ / ___ |
| ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 |
|\/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | |\/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | |\/ 2 *\/ 3 * / - + ----- \/ 2 *\/ 3 * / - - ----- | | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- |
| \/ 2 4 \/ 2 4 | | \/ 2 4 \/ 2 4 | | \/ 2 4 \/ 2 4 | | \/ 2 4 \/ 2 4 |
I*|---------------------------- + ----------------------------| + I*|---------------------------- - ----------------------------| + I*|---------------------------- - ----------------------------| + I*|- ---------------------------- - ----------------------------|
\ 2 2 / \ 2 2 / \ 2 2 / \ 2 2 /
$$i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right) + i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right) + i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right) + i \left(\frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)$$
/ / ___________ ___________\ ___________ ___________\ / / ___________ ___________\ ___________ ___________\ / / ___________ ___________\ ___________ ___________\ / / ___________ ___________\ ___________ ___________\
| | / ___ / ___ | / ___ / ___ | | | / ___ / ___ | / ___ / ___ | | | / ___ / ___ | / ___ / ___ | | | / ___ / ___ | / ___ / ___ |
/ ___________ ___________\ / ___________ ___________\ / ___________ ___________\ / ___________ ___________\ | | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | | | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | | | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | | | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 | ___ 8 ___ / 1 \/ 2 ___ 8 ___ / 1 \/ 2 |
| / ___ / ___ | | / ___ / ___ | | / ___ / ___ | | / ___ / ___ | | |\/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 *\/ 3 * / - + ----- \/ 2 *\/ 3 * / - - ----- | | |\/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | | |\/ 2 *\/ 3 * / - + ----- \/ 2 *\/ 3 * / - - ----- | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | | | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 *\/ 3 * / - - ----- \/ 2 *\/ 3 * / - + ----- |
| 8 ___ / 1 \/ 2 8 ___ / 1 \/ 2 | |8 ___ / 1 \/ 2 8 ___ / 1 \/ 2 | | 8 ___ / 1 \/ 2 8 ___ / 1 \/ 2 | |8 ___ / 1 \/ 2 8 ___ / 1 \/ 2 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 |
1*|- \/ 3 * / - - ----- + I*\/ 3 * / - + ----- |*|\/ 3 * / - - ----- - I*\/ 3 * / - + ----- |*|- \/ 3 * / - + ----- - I*\/ 3 * / - - ----- |*|\/ 3 * / - + ----- + I*\/ 3 * / - - ----- |*|I*|---------------------------- + ----------------------------| + ---------------------------- - ----------------------------|*|I*|---------------------------- - ----------------------------| + ---------------------------- + ----------------------------|*|I*|---------------------------- - ----------------------------| - ---------------------------- - ----------------------------|*|I*|- ---------------------------- - ----------------------------| + ---------------------------- - ----------------------------|
\ \/ 2 4 \/ 2 4 / \ \/ 2 4 \/ 2 4 / \ \/ 2 4 \/ 2 4 / \ \/ 2 4 \/ 2 4 / \ \ 2 2 / 2 2 / \ \ 2 2 / 2 2 / \ \ 2 2 / 2 2 / \ \ 2 2 / 2 2 /
$$1 \left(- \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} + \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) \left(\sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}} - \sqrt[8]{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}\right) \left(- \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) \left(\sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[8]{3} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(\frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right) \left(\frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right) \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right) \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt{2} \cdot \sqrt[8]{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right)$$
x1 = 0.439015463195998 - 1.05987708533928*i
x2 = 1.05987708533928 - 0.439015463195998*i
x3 = -0.439015463195998 - 1.05987708533928*i
x4 = 0.439015463195998 + 1.05987708533928*i
x5 = -1.05987708533928 - 0.439015463195998*i
x6 = -1.05987708533928 + 0.439015463195998*i
x7 = 1.05987708533928 + 0.439015463195998*i
x8 = -0.439015463195998 + 1.05987708533928*i