z^2-1=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: z^2-1=0

    Решение

    Вы ввели [src]
     2        
    z  - 1 = 0
    z21=0z^{2} - 1 = 0
    Подробное решение
    Это уравнение вида
    a*z^2 + b*z + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    z1=Db2az_{1} = \frac{\sqrt{D} - b}{2 a}
    z2=Db2az_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=0b = 0
    c=1c = -1
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (-1) = 4

    Т.к. D > 0, то уравнение имеет два корня.
    z1 = (-b + sqrt(D)) / (2*a)

    z2 = (-b - sqrt(D)) / (2*a)

    или
    z1=1z_{1} = 1
    Упростить
    z2=1z_{2} = -1
    Упростить
    График
    05-15-10-51015200-100
    Быстрый ответ [src]
    z1 = -1
    z1=1z_{1} = -1
    z2 = 1
    z2=1z_{2} = 1
    Сумма и произведение корней [src]
    сумма
    0 - 1 + 1
    (1+0)+1\left(-1 + 0\right) + 1
    =
    0
    00
    произведение
    1*-1*1
    1(1)11 \left(-1\right) 1
    =
    -1
    1-1
    Теорема Виета
    это приведённое квадратное уравнение
    pz+q+z2=0p z + q + z^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=0p = 0
    q=caq = \frac{c}{a}
    q=1q = -1
    Формулы Виета
    z1+z2=pz_{1} + z_{2} = - p
    z1z2=qz_{1} z_{2} = q
    z1+z2=0z_{1} + z_{2} = 0
    z1z2=1z_{1} z_{2} = -1
    Численный ответ [src]
    z1 = 1.0
    z2 = -1.0
    График
    z^2-1=0 (уравнение) /media/krcore-image-pods/hash/equation/a/42/9b5986ec9eeae3414e6b42a1beaa4.png