Решите уравнение z^2-36=0 (z в квадрате минус 36 равно 0) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

z^2-36=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: z^2-36=0

    Решение

    Вы ввели [src]
     2         
    z  - 36 = 0
    $$z^{2} - 36 = 0$$
    Подробное решение
    Это уравнение вида
    a*z^2 + b*z + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$z_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$z_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = 0$$
    $$c = -36$$
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (-36) = 144

    Т.к. D > 0, то уравнение имеет два корня.
    z1 = (-b + sqrt(D)) / (2*a)

    z2 = (-b - sqrt(D)) / (2*a)

    или
    $$z_{1} = 6$$
    Упростить
    $$z_{2} = -6$$
    Упростить
    График
    Быстрый ответ [src]
    z1 = -6
    $$z_{1} = -6$$
    z2 = 6
    $$z_{2} = 6$$
    Сумма и произведение корней [src]
    сумма
    0 - 6 + 6
    $$\left(-6 + 0\right) + 6$$
    =
    0
    $$0$$
    произведение
    1*-6*6
    $$1 \left(-6\right) 6$$
    =
    -36
    $$-36$$
    Теорема Виета
    это приведённое квадратное уравнение
    $$p z + q + z^{2} = 0$$
    где
    $$p = \frac{b}{a}$$
    $$p = 0$$
    $$q = \frac{c}{a}$$
    $$q = -36$$
    Формулы Виета
    $$z_{1} + z_{2} = - p$$
    $$z_{1} z_{2} = q$$
    $$z_{1} + z_{2} = 0$$
    $$z_{1} z_{2} = -36$$
    Численный ответ [src]
    z1 = -6.0
    z2 = 6.0
    График
    z^2-36=0 (уравнение) /media/krcore-image-pods/hash/equation/8/47/c869cf750e171fc1a073566ae242a.png