z^2+5=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: z^2+5=0
Решение
Подробное решение
Это уравнение видаa*z^2 + b*z + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:z 1 = D − b 2 a z_{1} = \frac{\sqrt{D} - b}{2 a} z 1 = 2 a D − b z 2 = − D − b 2 a z_{2} = \frac{- \sqrt{D} - b}{2 a} z 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 1 a = 1 a = 1 b = 0 b = 0 b = 0 c = 5 c = 5 c = 5 , тоD = b^2 - 4 * a * c = (0)^2 - 4 * (1) * (5) = -20 Т.к. D < 0, то уравнение не имеет вещественных корней, но комплексные корни имеются.z1 = (-b + sqrt(D)) / (2*a) z2 = (-b - sqrt(D)) / (2*a) илиz 1 = 5 i z_{1} = \sqrt{5} i z 1 = 5 i Упростить z 2 = − 5 i z_{2} = - \sqrt{5} i z 2 = − 5 i Упростить z 1 = − 5 i z_{1} = - \sqrt{5} i z 1 = − 5 i z 2 = 5 i z_{2} = \sqrt{5} i z 2 = 5 i
Сумма и произведение корней
[src] ___ ___
0 - I*\/ 5 + I*\/ 5 ( 0 − 5 i ) + 5 i \left(0 - \sqrt{5} i\right) + \sqrt{5} i ( 0 − 5 i ) + 5 i ___ ___
1*-I*\/ 5 *I*\/ 5 5 i 1 ( − 5 i ) \sqrt{5} i 1 \left(- \sqrt{5} i\right) 5 i 1 ( − 5 i )
Теорема Виета
это приведённое квадратное уравнениеp z + q + z 2 = 0 p z + q + z^{2} = 0 p z + q + z 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 0 p = 0 p = 0 q = c a q = \frac{c}{a} q = a c q = 5 q = 5 q = 5 Формулы Виетаz 1 + z 2 = − p z_{1} + z_{2} = - p z 1 + z 2 = − p z 1 z 2 = q z_{1} z_{2} = q z 1 z 2 = q z 1 + z 2 = 0 z_{1} + z_{2} = 0 z 1 + z 2 = 0 z 1 z 2 = 5 z_{1} z_{2} = 5 z 1 z 2 = 5