Решите уравнение z^2=-3 (z в квадрате равно минус 3) - Найдите корень уравнения подробно по-шагам. [Есть ответ!]

z^2=-3 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: z^2=-3

    Решение

    Вы ввели [src]
     2     
    z  = -3
    $$z^{2} = -3$$
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    $$z^{2} = -3$$
    в
    $$z^{2} + 3 = 0$$
    Это уравнение вида
    a*z^2 + b*z + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$z_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$z_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = 0$$
    $$c = 3$$
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (3) = -12

    Т.к. D < 0, то уравнение
    не имеет вещественных корней,
    но комплексные корни имеются.
    z1 = (-b + sqrt(D)) / (2*a)

    z2 = (-b - sqrt(D)) / (2*a)

    или
    $$z_{1} = \sqrt{3} i$$
    Упростить
    $$z_{2} = - \sqrt{3} i$$
    Упростить
    График
    Быстрый ответ [src]
              ___
    z1 = -I*\/ 3 
    $$z_{1} = - \sqrt{3} i$$
             ___
    z2 = I*\/ 3 
    $$z_{2} = \sqrt{3} i$$
    Сумма и произведение корней [src]
    сумма
          ___       ___
    - I*\/ 3  + I*\/ 3 
    $$- \sqrt{3} i + \sqrt{3} i$$
    =
    0
    $$0$$
    произведение
         ___     ___
    -I*\/ 3 *I*\/ 3 
    $$- \sqrt{3} i \sqrt{3} i$$
    =
    3
    $$3$$
    Теорема Виета
    это приведённое квадратное уравнение
    $$p z + q + z^{2} = 0$$
    где
    $$p = \frac{b}{a}$$
    $$p = 0$$
    $$q = \frac{c}{a}$$
    $$q = 3$$
    Формулы Виета
    $$z_{1} + z_{2} = - p$$
    $$z_{1} z_{2} = q$$
    $$z_{1} + z_{2} = 0$$
    $$z_{1} z_{2} = 3$$
    Численный ответ [src]
    z1 = 1.73205080756888*i
    z2 = -1.73205080756888*i
    График
    z^2=-3 (уравнение) /media/krcore-image-pods/hash/equation/8/a1/59d301e0a54517a3c47888ae07368.png