z^2=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: z^2=0
Решение
Подробное решение
Это уравнение видаa*z^2 + b*z + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:z 1 = D − b 2 a z_{1} = \frac{\sqrt{D} - b}{2 a} z 1 = 2 a D − b z 2 = − D − b 2 a z_{2} = \frac{- \sqrt{D} - b}{2 a} z 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 1 a = 1 a = 1 b = 0 b = 0 b = 0 c = 0 c = 0 c = 0 , тоD = b^2 - 4 * a * c = (0)^2 - 4 * (1) * (0) = 0 Т.к. D = 0, то корень всего один.z = -b/2a = -0/2/(1) z 1 = 0 z_{1} = 0 z 1 = 0
График
-15.0 -12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 15.0 10.0 12.5 0 200
Сумма и произведение корней
[src]
Теорема Виета
это приведённое квадратное уравнениеp z + q + z 2 = 0 p z + q + z^{2} = 0 p z + q + z 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 0 p = 0 p = 0 q = c a q = \frac{c}{a} q = a c q = 0 q = 0 q = 0 Формулы Виетаz 1 + z 2 = − p z_{1} + z_{2} = - p z 1 + z 2 = − p z 1 z 2 = q z_{1} z_{2} = q z 1 z 2 = q z 1 + z 2 = 0 z_{1} + z_{2} = 0 z 1 + z 2 = 0 z 1 z 2 = 0 z_{1} z_{2} = 0 z 1 z 2 = 0