Подробное решение
Дано уравнение
$$z^{12} = -4$$
Т.к. степень в ур-нии равна = 12 и свободный член = -4 < 0,
зн. действительных решений у соотв. ур-ния не существует
Остальные 12 корня(ей) являются комплексными.
сделаем замену:
$$w = z$$
тогда ур-ние будет таким:
$$w^{12} = -4$$
Любое комплексное число можно представить так:
$$w = r e^{i p}$$
подставляем в уравнение
$$r^{12} e^{12 i p} = -4$$
где
$$r = \sqrt[6]{2}$$
- модуль комплексного числа
Подставляем r:
$$e^{12 i p} = -1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left(12 p \right)} + \cos{\left(12 p \right)} = -1$$
значит
$$\cos{\left(12 p \right)} = -1$$
и
$$\sin{\left(12 p \right)} = 0$$
тогда
$$p = \frac{\pi N}{6} + \frac{\pi}{12}$$
где N=0,1,2,3,...
Перебирая значения N и подставив p в формулу для w
Значит, решением будет для w:
$$w_{1} = - \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}$$
$$w_{2} = - \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}$$
$$w_{3} = \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}$$
$$w_{4} = \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}$$
$$w_{5} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
$$w_{6} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} - \frac{2^{\frac{2}{3}} i}{4}$$
$$w_{7} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
$$w_{8} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} + \frac{2^{\frac{2}{3}} i}{4}$$
$$w_{9} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
$$w_{10} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} + \frac{2^{\frac{2}{3}} i}{4}$$
$$w_{11} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
$$w_{12} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} - \frac{2^{\frac{2}{3}} i}{4}$$
делаем обратную замену
$$w = z$$
$$z = w$$
Тогда, окончательный ответ:
$$z_{1} = - \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}$$
$$z_{2} = - \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}$$
$$z_{3} = \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}$$
$$z_{4} = \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}$$
$$z_{5} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
$$z_{6} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} - \frac{2^{\frac{2}{3}} i}{4}$$
$$z_{7} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
$$z_{8} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} + \frac{2^{\frac{2}{3}} i}{4}$$
$$z_{9} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
$$z_{10} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} + \frac{2^{\frac{2}{3}} i}{4}$$
$$z_{11} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}$$
$$z_{12} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} - \frac{2^{\frac{2}{3}} i}{4}$$
2/3 2/3
2 I*2
z1 = - ---- - ------
2 2
$$z_{1} = - \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}$$
2/3 2/3
2 I*2
z2 = - ---- + ------
2 2
$$z_{2} = - \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}$$
2/3 2/3
2 I*2
z3 = ---- - ------
2 2
$$z_{3} = \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}$$
2/3 2/3
2 I*2
z4 = ---- + ------
2 2
$$z_{4} = \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}$$
2/3 / 2/3 2/3 ___\ 2/3 ___
2 |2 2 *\/ 3 | 2 *\/ 3
z5 = - ---- + I*|---- + ----------| + ----------
4 \ 4 4 / 4
$$z_{5} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)$$
2/3 / 2/3 2/3 ___\ 2/3 ___
2 | 2 2 *\/ 3 | 2 *\/ 3
z6 = - ---- + I*|- ---- - ----------| + ----------
4 \ 4 4 / 4
$$z_{6} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)$$
2/3 / 2/3 2/3 ___\ 2/3 ___
2 | 2 2 *\/ 3 | 2 *\/ 3
z7 = ---- + I*|- ---- + ----------| + ----------
4 \ 4 4 / 4
$$z_{7} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)$$
2/3 / 2/3 2/3 ___\ 2/3 ___
2 |2 2 *\/ 3 | 2 *\/ 3
z8 = ---- + I*|---- - ----------| + ----------
4 \ 4 4 / 4
$$z_{8} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right)$$
2/3 / 2/3 2/3 ___\ 2/3 ___
2 | 2 2 *\/ 3 | 2 *\/ 3
z9 = - ---- + I*|- ---- + ----------| - ----------
4 \ 4 4 / 4
$$z_{9} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)$$
2/3 / 2/3 2/3 ___\ 2/3 ___
2 |2 2 *\/ 3 | 2 *\/ 3
z10 = - ---- + I*|---- - ----------| - ----------
4 \ 4 4 / 4
$$z_{10} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right)$$
2/3 / 2/3 2/3 ___\ 2/3 ___
2 |2 2 *\/ 3 | 2 *\/ 3
z11 = ---- + I*|---- + ----------| - ----------
4 \ 4 4 / 4
$$z_{11} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)$$
2/3 / 2/3 2/3 ___\ 2/3 ___
2 | 2 2 *\/ 3 | 2 *\/ 3
z12 = ---- + I*|- ---- - ----------| - ----------
4 \ 4 4 / 4
$$z_{12} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)$$
Сумма и произведение корней
[src] 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 / 2/3 2/3 ___\ 2/3 ___ 2/3 / 2/3 2/3 ___\ 2/3 ___ 2/3 / 2/3 2/3 ___\ 2/3 ___ 2/3 / 2/3 2/3 ___\ 2/3 ___ 2/3 / 2/3 2/3 ___\ 2/3 ___ 2/3 / 2/3 2/3 ___\ 2/3 ___ 2/3 / 2/3 2/3 ___\ 2/3 ___ 2/3 / 2/3 2/3 ___\ 2/3 ___
2 I*2 2 I*2 2 I*2 2 I*2 2 |2 2 *\/ 3 | 2 *\/ 3 2 | 2 2 *\/ 3 | 2 *\/ 3 2 | 2 2 *\/ 3 | 2 *\/ 3 2 |2 2 *\/ 3 | 2 *\/ 3 2 | 2 2 *\/ 3 | 2 *\/ 3 2 |2 2 *\/ 3 | 2 *\/ 3 2 |2 2 *\/ 3 | 2 *\/ 3 2 | 2 2 *\/ 3 | 2 *\/ 3
0 + - ---- - ------ + - ---- + ------ + ---- - ------ + ---- + ------ + - ---- + I*|---- + ----------| + ---------- + - ---- + I*|- ---- - ----------| + ---------- + ---- + I*|- ---- + ----------| + ---------- + ---- + I*|---- - ----------| + ---------- + - ---- + I*|- ---- + ----------| - ---------- + - ---- + I*|---- - ----------| - ---------- + ---- + I*|---- + ----------| - ---------- + ---- + I*|- ---- - ----------| - ----------
2 2 2 2 2 2 2 2 4 \ 4 4 / 4 4 \ 4 4 / 4 4 \ 4 4 / 4 4 \ 4 4 / 4 4 \ 4 4 / 4 4 \ 4 4 / 4 4 \ 4 4 / 4 4 \ 4 4 / 4
$$\left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)\right) - \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} - 2 i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right) - 2 i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right) - 2 i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right) - i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)\right)$$
/ 2/3 2/3 ___\ / 2/3 2/3 ___\ / 2/3 2/3 ___\ / 2/3 2/3 ___\
| 2 2 *\/ 3 | | 2 2 *\/ 3 | |2 2 *\/ 3 | |2 2 *\/ 3 |
2*I*|- ---- - ----------| + 2*I*|- ---- + ----------| + 2*I*|---- - ----------| + 2*I*|---- + ----------|
\ 4 4 / \ 4 4 / \ 4 4 / \ 4 4 /
$$2 i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right) + 2 i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right) + 2 i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right) + 2 i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)$$
/ 2/3 2/3\ / 2/3 2/3\ / 2/3 2/3\ / 2/3 2/3\ / 2/3 / 2/3 2/3 ___\ 2/3 ___\ / 2/3 / 2/3 2/3 ___\ 2/3 ___\ / 2/3 / 2/3 2/3 ___\ 2/3 ___\ / 2/3 / 2/3 2/3 ___\ 2/3 ___\ / 2/3 / 2/3 2/3 ___\ 2/3 ___\ / 2/3 / 2/3 2/3 ___\ 2/3 ___\ / 2/3 / 2/3 2/3 ___\ 2/3 ___\ / 2/3 / 2/3 2/3 ___\ 2/3 ___\
| 2 I*2 | | 2 I*2 | |2 I*2 | |2 I*2 | | 2 |2 2 *\/ 3 | 2 *\/ 3 | | 2 | 2 2 *\/ 3 | 2 *\/ 3 | |2 | 2 2 *\/ 3 | 2 *\/ 3 | |2 |2 2 *\/ 3 | 2 *\/ 3 | | 2 | 2 2 *\/ 3 | 2 *\/ 3 | | 2 |2 2 *\/ 3 | 2 *\/ 3 | |2 |2 2 *\/ 3 | 2 *\/ 3 | |2 | 2 2 *\/ 3 | 2 *\/ 3 |
1*|- ---- - ------|*|- ---- + ------|*|---- - ------|*|---- + ------|*|- ---- + I*|---- + ----------| + ----------|*|- ---- + I*|- ---- - ----------| + ----------|*|---- + I*|- ---- + ----------| + ----------|*|---- + I*|---- - ----------| + ----------|*|- ---- + I*|- ---- + ----------| - ----------|*|- ---- + I*|---- - ----------| - ----------|*|---- + I*|---- + ----------| - ----------|*|---- + I*|- ---- - ----------| - ----------|
\ 2 2 / \ 2 2 / \ 2 2 / \ 2 2 / \ 4 \ 4 4 / 4 / \ 4 \ 4 4 / 4 / \ 4 \ 4 4 / 4 / \ 4 \ 4 4 / 4 / \ 4 \ 4 4 / 4 / \ 4 \ 4 4 / 4 / \ 4 \ 4 4 / 4 / \ 4 \ 4 4 / 4 /
$$1 \left(- \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}\right) \left(- \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}\right) \left(\frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}\right) \left(\frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}\right) \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)\right) \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)\right) \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)\right) \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right)\right) \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)\right) \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right)\right) \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)\right) \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)\right)$$
z1 = -1.08421508149135 + 0.290514555507251*i
z2 = 1.08421508149135 - 0.290514555507251*i
z3 = -0.290514555507251 + 1.08421508149135*i
z4 = -0.7937005259841 + 0.7937005259841*i
z5 = -0.290514555507251 - 1.08421508149135*i
z6 = -1.08421508149135 - 0.290514555507251*i
z7 = 1.08421508149135 + 0.290514555507251*i
z8 = 0.290514555507251 - 1.08421508149135*i
z9 = 0.7937005259841 - 0.7937005259841*i
z10 = 0.290514555507251 + 1.08421508149135*i
z11 = -0.7937005259841 - 0.7937005259841*i
z12 = 0.7937005259841 + 0.7937005259841*i