z^12=-4 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: z^12=-4

    Решение

    Вы ввели [src]
     12     
    z   = -4
    z12=4z^{12} = -4
    Подробное решение
    Дано уравнение
    z12=4z^{12} = -4
    Т.к. степень в ур-нии равна = 12 и свободный член = -4 < 0,
    зн. действительных решений у соотв. ур-ния не существует

    Остальные 12 корня(ей) являются комплексными.
    сделаем замену:
    w=zw = z
    тогда ур-ние будет таким:
    w12=4w^{12} = -4
    Любое комплексное число можно представить так:
    w=reipw = r e^{i p}
    подставляем в уравнение
    r12e12ip=4r^{12} e^{12 i p} = -4
    где
    r=26r = \sqrt[6]{2}
    - модуль комплексного числа
    Подставляем r:
    e12ip=1e^{12 i p} = -1
    Используя формулу Эйлера, найдём корни для p
    isin(12p)+cos(12p)=1i \sin{\left(12 p \right)} + \cos{\left(12 p \right)} = -1
    значит
    cos(12p)=1\cos{\left(12 p \right)} = -1
    и
    sin(12p)=0\sin{\left(12 p \right)} = 0
    тогда
    p=πN6+π12p = \frac{\pi N}{6} + \frac{\pi}{12}
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для w
    Значит, решением будет для w:
    w1=2232223i2w_{1} = - \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}
    w2=2232+223i2w_{2} = - \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}
    w3=2232223i2w_{3} = \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}
    w4=2232+223i2w_{4} = \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}
    w5=2234+22334+223i4+2233i4w_{5} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}
    w6=2234+223342233i4223i4w_{6} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} - \frac{2^{\frac{2}{3}} i}{4}
    w7=2234+22334223i4+2233i4w_{7} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}
    w8=2234+223342233i4+223i4w_{8} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} + \frac{2^{\frac{2}{3}} i}{4}
    w9=223342234223i4+2233i4w_{9} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}
    w10=2233422342233i4+223i4w_{10} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} + \frac{2^{\frac{2}{3}} i}{4}
    w11=22334+2234+223i4+2233i4w_{11} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}
    w12=22334+22342233i4223i4w_{12} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} - \frac{2^{\frac{2}{3}} i}{4}
    делаем обратную замену
    w=zw = z
    z=wz = w

    Тогда, окончательный ответ:
    z1=2232223i2z_{1} = - \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}
    z2=2232+223i2z_{2} = - \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}
    z3=2232223i2z_{3} = \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}
    z4=2232+223i2z_{4} = \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}
    z5=2234+22334+223i4+2233i4z_{5} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}
    z6=2234+223342233i4223i4z_{6} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} - \frac{2^{\frac{2}{3}} i}{4}
    z7=2234+22334223i4+2233i4z_{7} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}
    z8=2234+223342233i4+223i4z_{8} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} + \frac{2^{\frac{2}{3}} i}{4}
    z9=223342234223i4+2233i4z_{9} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}
    z10=2233422342233i4+223i4z_{10} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} + \frac{2^{\frac{2}{3}} i}{4}
    z11=22334+2234+223i4+2233i4z_{11} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}
    z12=22334+22342233i4223i4z_{12} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} - \frac{2^{\frac{2}{3}} i}{4}
    График
    -2.0-1.5-1.0-0.50.00.51.01.52.0-100100
    Быстрый ответ [src]
            2/3      2/3
           2      I*2   
    z1 = - ---- - ------
            2       2   
    z1=2232223i2z_{1} = - \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}
            2/3      2/3
           2      I*2   
    z2 = - ---- + ------
            2       2   
    z2=2232+223i2z_{2} = - \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}
          2/3      2/3
         2      I*2   
    z3 = ---- - ------
          2       2   
    z3=2232223i2z_{3} = \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}
          2/3      2/3
         2      I*2   
    z4 = ---- + ------
          2       2   
    z4=2232+223i2z_{4} = \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}
            2/3     / 2/3    2/3   ___\    2/3   ___
           2        |2      2   *\/ 3 |   2   *\/ 3 
    z5 = - ---- + I*|---- + ----------| + ----------
            4       \ 4         4     /       4     
    z5=2234+22334+i(2234+22334)z_{5} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)
            2/3     /   2/3    2/3   ___\    2/3   ___
           2        |  2      2   *\/ 3 |   2   *\/ 3 
    z6 = - ---- + I*|- ---- - ----------| + ----------
            4       \   4         4     /       4     
    z6=2234+22334+i(223342234)z_{6} = - \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)
          2/3     /   2/3    2/3   ___\    2/3   ___
         2        |  2      2   *\/ 3 |   2   *\/ 3 
    z7 = ---- + I*|- ---- + ----------| + ----------
          4       \   4         4     /       4     
    z7=2234+22334+i(2234+22334)z_{7} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)
          2/3     / 2/3    2/3   ___\    2/3   ___
         2        |2      2   *\/ 3 |   2   *\/ 3 
    z8 = ---- + I*|---- - ----------| + ----------
          4       \ 4         4     /       4     
    z8=2234+22334+i(22334+2234)z_{8} = \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right)
            2/3     /   2/3    2/3   ___\    2/3   ___
           2        |  2      2   *\/ 3 |   2   *\/ 3 
    z9 = - ---- + I*|- ---- + ----------| - ----------
            4       \   4         4     /       4     
    z9=223342234+i(2234+22334)z_{9} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)
             2/3     / 2/3    2/3   ___\    2/3   ___
            2        |2      2   *\/ 3 |   2   *\/ 3 
    z10 = - ---- + I*|---- - ----------| - ----------
             4       \ 4         4     /       4     
    z10=223342234+i(22334+2234)z_{10} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right)
           2/3     / 2/3    2/3   ___\    2/3   ___
          2        |2      2   *\/ 3 |   2   *\/ 3 
    z11 = ---- + I*|---- + ----------| - ----------
           4       \ 4         4     /       4     
    z11=22334+2234+i(2234+22334)z_{11} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)
           2/3     /   2/3    2/3   ___\    2/3   ___
          2        |  2      2   *\/ 3 |   2   *\/ 3 
    z12 = ---- + I*|- ---- - ----------| - ----------
           4       \   4         4     /       4     
    z12=22334+2234+i(223342234)z_{12} = - \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)
    Сумма и произведение корней [src]
    сумма
           2/3      2/3      2/3      2/3    2/3      2/3    2/3      2/3      2/3     / 2/3    2/3   ___\    2/3   ___      2/3     /   2/3    2/3   ___\    2/3   ___    2/3     /   2/3    2/3   ___\    2/3   ___    2/3     / 2/3    2/3   ___\    2/3   ___      2/3     /   2/3    2/3   ___\    2/3   ___      2/3     / 2/3    2/3   ___\    2/3   ___    2/3     / 2/3    2/3   ___\    2/3   ___    2/3     /   2/3    2/3   ___\    2/3   ___
          2      I*2        2      I*2      2      I*2      2      I*2        2        |2      2   *\/ 3 |   2   *\/ 3      2        |  2      2   *\/ 3 |   2   *\/ 3    2        |  2      2   *\/ 3 |   2   *\/ 3    2        |2      2   *\/ 3 |   2   *\/ 3      2        |  2      2   *\/ 3 |   2   *\/ 3      2        |2      2   *\/ 3 |   2   *\/ 3    2        |2      2   *\/ 3 |   2   *\/ 3    2        |  2      2   *\/ 3 |   2   *\/ 3 
    0 + - ---- - ------ + - ---- + ------ + ---- - ------ + ---- + ------ + - ---- + I*|---- + ----------| + ---------- + - ---- + I*|- ---- - ----------| + ---------- + ---- + I*|- ---- + ----------| + ---------- + ---- + I*|---- - ----------| + ---------- + - ---- + I*|- ---- + ----------| - ---------- + - ---- + I*|---- - ----------| - ---------- + ---- + I*|---- + ----------| - ---------- + ---- + I*|- ---- - ----------| - ----------
           2       2         2       2       2       2       2       2         4       \ 4         4     /       4           4       \   4         4     /       4         4       \   4         4     /       4         4       \ 4         4     /       4           4       \   4         4     /       4           4       \ 4         4     /       4         4       \ 4         4     /       4         4       \   4         4     /       4     
    (22334+2234+i(223342234))(22334+22342i(2234+22334)2i(2234+22334)2i(22334+2234)i(223342234))\left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)\right) - \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} - 2 i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right) - 2 i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right) - 2 i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right) - i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)\right)
    =
        /   2/3    2/3   ___\       /   2/3    2/3   ___\       / 2/3    2/3   ___\       / 2/3    2/3   ___\
        |  2      2   *\/ 3 |       |  2      2   *\/ 3 |       |2      2   *\/ 3 |       |2      2   *\/ 3 |
    2*I*|- ---- - ----------| + 2*I*|- ---- + ----------| + 2*I*|---- - ----------| + 2*I*|---- + ----------|
        \   4         4     /       \   4         4     /       \ 4         4     /       \ 4         4     /
    2i(223342234)+2i(22334+2234)+2i(2234+22334)+2i(2234+22334)2 i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right) + 2 i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right) + 2 i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right) + 2 i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)
    произведение
      /   2/3      2/3\ /   2/3      2/3\ / 2/3      2/3\ / 2/3      2/3\ /   2/3     / 2/3    2/3   ___\    2/3   ___\ /   2/3     /   2/3    2/3   ___\    2/3   ___\ / 2/3     /   2/3    2/3   ___\    2/3   ___\ / 2/3     / 2/3    2/3   ___\    2/3   ___\ /   2/3     /   2/3    2/3   ___\    2/3   ___\ /   2/3     / 2/3    2/3   ___\    2/3   ___\ / 2/3     / 2/3    2/3   ___\    2/3   ___\ / 2/3     /   2/3    2/3   ___\    2/3   ___\
      |  2      I*2   | |  2      I*2   | |2      I*2   | |2      I*2   | |  2        |2      2   *\/ 3 |   2   *\/ 3 | |  2        |  2      2   *\/ 3 |   2   *\/ 3 | |2        |  2      2   *\/ 3 |   2   *\/ 3 | |2        |2      2   *\/ 3 |   2   *\/ 3 | |  2        |  2      2   *\/ 3 |   2   *\/ 3 | |  2        |2      2   *\/ 3 |   2   *\/ 3 | |2        |2      2   *\/ 3 |   2   *\/ 3 | |2        |  2      2   *\/ 3 |   2   *\/ 3 |
    1*|- ---- - ------|*|- ---- + ------|*|---- - ------|*|---- + ------|*|- ---- + I*|---- + ----------| + ----------|*|- ---- + I*|- ---- - ----------| + ----------|*|---- + I*|- ---- + ----------| + ----------|*|---- + I*|---- - ----------| + ----------|*|- ---- + I*|- ---- + ----------| - ----------|*|- ---- + I*|---- - ----------| - ----------|*|---- + I*|---- + ----------| - ----------|*|---- + I*|- ---- - ----------| - ----------|
      \   2       2   / \   2       2   / \ 2       2   / \ 2       2   / \   4       \ 4         4     /       4     / \   4       \   4         4     /       4     / \ 4       \   4         4     /       4     / \ 4       \ 4         4     /       4     / \   4       \   4         4     /       4     / \   4       \ 4         4     /       4     / \ 4       \ 4         4     /       4     / \ 4       \   4         4     /       4     /
    1(2232223i2)(2232+223i2)(2232223i2)(2232+223i2)(2234+22334+i(2234+22334))(2234+22334+i(223342234))(2234+22334+i(2234+22334))(2234+22334+i(22334+2234))(223342234+i(2234+22334))(223342234+i(22334+2234))(22334+2234+i(2234+22334))(22334+2234+i(223342234))1 \left(- \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}\right) \left(- \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}\right) \left(\frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}\right) \left(\frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} i}{2}\right) \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)\right) \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)\right) \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)\right) \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right)\right) \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)\right) \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4}\right)\right) \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + i \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4}\right)\right) \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + i \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}}}{4}\right)\right)
    =
    4
    44
    Численный ответ [src]
    z1 = -1.08421508149135 + 0.290514555507251*i
    z2 = 1.08421508149135 - 0.290514555507251*i
    z3 = -0.290514555507251 + 1.08421508149135*i
    z4 = -0.7937005259841 + 0.7937005259841*i
    z5 = -0.290514555507251 - 1.08421508149135*i
    z6 = -1.08421508149135 - 0.290514555507251*i
    z7 = 1.08421508149135 + 0.290514555507251*i
    z8 = 0.290514555507251 - 1.08421508149135*i
    z9 = 0.7937005259841 - 0.7937005259841*i
    z10 = 0.290514555507251 + 1.08421508149135*i
    z11 = -0.7937005259841 - 0.7937005259841*i
    z12 = 0.7937005259841 + 0.7937005259841*i
    График
    z^12=-4 (уравнение) /media/krcore-image-pods/hash/equation/8/74/727bd07b49b4a777b90a0c755c19d.png