z^5-32=0 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: z^5-32=0
Решение
Подробное решение
Дано уравнение
$$z^{5} - 32 = 0$$
Т.к. степень в ур-нии равна = 5 - не содержит чётного числа в числителе, то
ур-ние будет иметь один действительный корень.
Извлечём корень 5-й степени из обеих частей ур-ния:
Получим:
$$\sqrt[5]{z^{5}} = \sqrt[5]{32}$$
или
$$z = 2$$
Получим ответ: z = 2
Остальные 4 корня(ей) являются комплексными.
сделаем замену:
$$w = z$$
тогда ур-ние будет таким:
$$w^{5} = 32$$
Любое комплексное число можно представить так:
$$w = r e^{i p}$$
подставляем в уравнение
$$r^{5} e^{5 i p} = 32$$
где
$$r = 2$$
- модуль комплексного числа
Подставляем r:
$$e^{5 i p} = 1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left(5 p \right)} + \cos{\left(5 p \right)} = 1$$
значит
$$\cos{\left(5 p \right)} = 1$$
и
$$\sin{\left(5 p \right)} = 0$$
тогда
$$p = \frac{2 \pi N}{5}$$
где N=0,1,2,3,...
Перебирая значения N и подставив p в формулу для w
Значит, решением будет для w:
$$w_{1} = 2$$
$$w_{2} = - \frac{1}{2} + \frac{\sqrt{5}}{2} - 2 i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
$$w_{3} = - \frac{1}{2} + \frac{\sqrt{5}}{2} + 2 i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
$$w_{4} = - \frac{\sqrt{5}}{2} - \frac{1}{2} - 2 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
$$w_{5} = - \frac{\sqrt{5}}{2} - \frac{1}{2} + 2 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
делаем обратную замену
$$w = z$$
$$z = w$$
Тогда, окончательный ответ:
$$z_{1} = 2$$
$$z_{2} = - \frac{1}{2} + \frac{\sqrt{5}}{2} - 2 i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
$$z_{3} = - \frac{1}{2} + \frac{\sqrt{5}}{2} + 2 i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
$$z_{4} = - \frac{\sqrt{5}}{2} - \frac{1}{2} - 2 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
$$z_{5} = - \frac{\sqrt{5}}{2} - \frac{1}{2} + 2 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
___________
___ / ___
1 \/ 5 / 5 \/ 5
z2 = - - + ----- - 2*I* / - + -----
2 2 \/ 8 8
$$z_{2} = - \frac{1}{2} + \frac{\sqrt{5}}{2} - 2 i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
___________
___ / ___
1 \/ 5 / 5 \/ 5
z3 = - - + ----- + 2*I* / - + -----
2 2 \/ 8 8
$$z_{3} = - \frac{1}{2} + \frac{\sqrt{5}}{2} + 2 i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}$$
___________
___ / ___
1 \/ 5 / 5 \/ 5
z4 = - - - ----- - 2*I* / - - -----
2 2 \/ 8 8
$$z_{4} = - \frac{\sqrt{5}}{2} - \frac{1}{2} - 2 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
___________
___ / ___
1 \/ 5 / 5 \/ 5
z5 = - - - ----- + 2*I* / - - -----
2 2 \/ 8 8
$$z_{5} = - \frac{\sqrt{5}}{2} - \frac{1}{2} + 2 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}$$
z1 = -1.61803398874989 + 1.17557050458495*i
z3 = -1.61803398874989 - 1.17557050458495*i
z4 = 0.618033988749895 - 1.90211303259031*i
z5 = 0.618033988749895 + 1.90211303259031*i