Подробное решение
Дано уравнение
$$z^{6} + 1 - i = 0$$
Т.к. степень в ур-нии равна = 6 и свободный член = -1 + i комплексное,
зн. действительных решений у соотв. ур-ния не существует
Остальные 6 корня(ей) являются комплексными.
сделаем замену:
$$w = z$$
тогда ур-ние будет таким:
$$w^{6} = -1 + i$$
Любое комплексное число можно представить так:
$$w = r e^{i p}$$
подставляем в уравнение
$$r^{6} e^{6 i p} = -1 + i$$
где
$$r = \sqrt[12]{2}$$
- модуль комплексного числа
Подставляем r:
$$e^{6 i p} = \frac{\sqrt{2} \left(-1 + i\right)}{2}$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left(6 p \right)} + \cos{\left(6 p \right)} = \frac{\sqrt{2} \left(-1 + i\right)}{2}$$
значит
$$\cos{\left(6 p \right)} = - \frac{\sqrt{2}}{2}$$
и
$$\sin{\left(6 p \right)} = \frac{\sqrt{2}}{2}$$
тогда
$$p = \frac{\pi N}{3} - \frac{\pi}{24}$$
где N=0,1,2,3,...
Перебирая значения N и подставив p в формулу для w
Значит, решением будет для w:
$$w_{1} = - \sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$w_{2} = \sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$w_{3} = - \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$w_{4} = - \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt[12]{2} \sqrt{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
$$w_{5} = - \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$w_{6} = \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} \sqrt{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
делаем обратную замену
$$w = z$$
$$z = w$$
Тогда, окончательный ответ:
$$z_{1} = - \sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$z_{2} = \sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
$$z_{3} = - \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$z_{4} = - \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} - \frac{\sqrt[12]{2} \sqrt{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
$$z_{5} = - \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}$$
$$z_{6} = \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} \sqrt{3} i \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}$$
___________ ___________
/ ___ / ___
12___ / 1 \/ 2 12___ / 1 \/ 2
z1 = - \/ 2 * / - + ----- - I*\/ 2 * / - - -----
\/ 2 4 \/ 2 4
$$z_{1} = - \sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
___________ ___________
/ ___ / ___
12___ / 1 \/ 2 12___ / 1 \/ 2
z2 = \/ 2 * / - + ----- + I*\/ 2 * / - - -----
\/ 2 4 \/ 2 4
$$z_{2} = \sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2
| \/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
z3 = I*|- ---------------------- + ----------------------------| - ---------------------- - ----------------------------
\ 2 2 / 2 2
$$z_{3} = - \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
| 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2
| \/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
z4 = I*|- ---------------------- - ----------------------------| - ---------------------- + ----------------------------
\ 2 2 / 2 2
$$z_{4} = - \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
|12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2
|\/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
z5 = I*|---------------------- + ----------------------------| + ---------------------- - ----------------------------
\ 2 2 / 2 2
$$z_{5} = - \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(\frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)$$
/ ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___
|12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2
|\/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - -----
| \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
z6 = I*|---------------------- - ----------------------------| + ---------------------- + ----------------------------
\ 2 2 / 2 2
$$z_{6} = \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)$$
Сумма и произведение корней
[src] / ___________ ___________\ ___________ ___________ / ___________ ___________\ ___________ ___________ / ___________ ___________\ ___________ ___________ / ___________ ___________\ ___________ ___________
| / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___ | / ___ / ___
___________ ___________ ___________ ___________ | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 |12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 |12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2
/ ___ / ___ / ___ / ___ | \/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - ----- | \/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - ----- |\/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - ----- |\/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - -----
12___ / 1 \/ 2 12___ / 1 \/ 2 12___ / 1 \/ 2 12___ / 1 \/ 2 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4
0 + - \/ 2 * / - + ----- - I*\/ 2 * / - - ----- + \/ 2 * / - + ----- + I*\/ 2 * / - - ----- + I*|- ---------------------- + ----------------------------| - ---------------------- - ---------------------------- + I*|- ---------------------- - ----------------------------| - ---------------------- + ---------------------------- + I*|---------------------- + ----------------------------| + ---------------------- - ---------------------------- + I*|---------------------- - ----------------------------| + ---------------------- + ----------------------------
\/ 2 4 \/ 2 4 \/ 2 4 \/ 2 4 \ 2 2 / 2 2 \ 2 2 / 2 2 \ 2 2 / 2 2 \ 2 2 / 2 2
$$\left(\frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right) - \left(\frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - i \left(\frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right) - i \left(- \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right) - i \left(- \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right)$$
/ ___________ ___________\ / ___________ ___________\ / ___________ ___________\ / ___________ ___________\
| / ___ / ___ | | / ___ / ___ | | / ___ / ___ | | / ___ / ___ |
|12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | |12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 |
|\/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | |\/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | | \/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | | \/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- |
| \/ 2 4 \/ 2 4 | | \/ 2 4 \/ 2 4 | | \/ 2 4 \/ 2 4 | | \/ 2 4 \/ 2 4 |
I*|---------------------- + ----------------------------| + I*|---------------------- - ----------------------------| + I*|- ---------------------- + ----------------------------| + I*|- ---------------------- - ----------------------------|
\ 2 2 / \ 2 2 / \ 2 2 / \ 2 2 /
$$i \left(- \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right) + i \left(- \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right) + i \left(- \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right) + i \left(\frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)$$
/ / ___________ ___________\ ___________ ___________\ / / ___________ ___________\ ___________ ___________\ / / ___________ ___________\ ___________ ___________\ / / ___________ ___________\ ___________ ___________\
| | / ___ / ___ | / ___ / ___ | | | / ___ / ___ | / ___ / ___ | | | / ___ / ___ | / ___ / ___ | | | / ___ / ___ | / ___ / ___ |
/ ___________ ___________\ / ___________ ___________\ | | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | | | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | | |12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | | |12___ / 1 \/ 2 12___ ___ / 1 \/ 2 | 12___ / 1 \/ 2 12___ ___ / 1 \/ 2 |
| / ___ / ___ | | / ___ / ___ | | | \/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - ----- | | | \/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - ----- | | |\/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - ----- | | |\/ 2 * / - - ----- \/ 2 *\/ 3 * / - + ----- | \/ 2 * / - + ----- \/ 2 *\/ 3 * / - - ----- |
| 12___ / 1 \/ 2 12___ / 1 \/ 2 | |12___ / 1 \/ 2 12___ / 1 \/ 2 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 | | | \/ 2 4 \/ 2 4 | \/ 2 4 \/ 2 4 |
1*|- \/ 2 * / - + ----- - I*\/ 2 * / - - ----- |*|\/ 2 * / - + ----- + I*\/ 2 * / - - ----- |*|I*|- ---------------------- + ----------------------------| - ---------------------- - ----------------------------|*|I*|- ---------------------- - ----------------------------| - ---------------------- + ----------------------------|*|I*|---------------------- + ----------------------------| + ---------------------- - ----------------------------|*|I*|---------------------- - ----------------------------| + ---------------------- + ----------------------------|
\ \/ 2 4 \/ 2 4 / \ \/ 2 4 \/ 2 4 / \ \ 2 2 / 2 2 / \ \ 2 2 / 2 2 / \ \ 2 2 / 2 2 / \ \ 2 2 / 2 2 /
$$1 \left(- \sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} - \sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) \left(\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}} + \sqrt[12]{2} i \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}\right) \left(- \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right) \left(- \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + i \left(- \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} - \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right) \left(- \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(\frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2}\right)\right) \left(\frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + i \left(- \frac{\sqrt[12]{2} \sqrt{3} \sqrt{\frac{\sqrt{2}}{4} + \frac{1}{2}}}{2} + \frac{\sqrt[12]{2} \sqrt{\frac{1}{2} - \frac{\sqrt{2}}{4}}}{2}\right)\right)$$
z1 = 0.978816268329627 + 0.405438973413554*i
z2 = -0.840528584825235 + 0.644960267304166*i
z3 = -0.138287683504392 - 1.05039924071772*i
z4 = 0.840528584825235 - 0.644960267304166*i
z5 = -0.978816268329627 - 0.405438973413554*i
z6 = 0.138287683504392 + 1.05039924071772*i