z^3 - 1 = 0 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: z^3 - 1 = 0
Решение
Подробное решение
Дано уравнение
$$z^{3} - 1 = 0$$
Т.к. степень в ур-нии равна = 3 - не содержит чётного числа в числителе, то
ур-ние будет иметь один действительный корень.
Извлечём корень 3-й степени из обеих частей ур-ния:
Получим:
$$\sqrt[3]{z^{3}} = \sqrt[3]{1}$$
или
$$z = 1$$
Получим ответ: z = 1
Остальные 2 корня(ей) являются комплексными.
сделаем замену:
$$w = z$$
тогда ур-ние будет таким:
$$w^{3} = 1$$
Любое комплексное число можно представить так:
$$w = r e^{i p}$$
подставляем в уравнение
$$r^{3} e^{3 i p} = 1$$
где
$$r = 1$$
- модуль комплексного числа
Подставляем r:
$$e^{3 i p} = 1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = 1$$
значит
$$\cos{\left(3 p \right)} = 1$$
и
$$\sin{\left(3 p \right)} = 0$$
тогда
$$p = \frac{2 \pi N}{3}$$
где N=0,1,2,3,...
Перебирая значения N и подставив p в формулу для w
Значит, решением будет для w:
$$w_{1} = 1$$
$$w_{2} = - \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
$$w_{3} = - \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
делаем обратную замену
$$w = z$$
$$z = w$$
Тогда, окончательный ответ:
$$z_{1} = 1$$
$$z_{2} = - \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
$$z_{3} = - \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
___
1 I*\/ 3
z2 = - - - -------
2 2
$$z_{2} = - \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
___
1 I*\/ 3
z3 = - - + -------
2 2
$$z_{3} = - \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
z2 = -0.5 + 0.866025403784439*i
z3 = -0.5 - 0.866025403784439*i