z^3-8=0 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: z^3-8=0
Решение
Подробное решение
Дано уравнение
$$z^{3} - 8 = 0$$
Т.к. степень в ур-нии равна = 3 - не содержит чётного числа в числителе, то
ур-ние будет иметь один действительный корень.
Извлечём корень 3-й степени из обеих частей ур-ния:
Получим:
$$\sqrt[3]{\left(1 z + 0\right)^{3}} = \sqrt[3]{8}$$
или
$$z = 2$$
Получим ответ: z = 2
Остальные 2 корня(ей) являются комплексными.
сделаем замену:
$$w = z$$
тогда ур-ние будет таким:
$$w^{3} = 8$$
Любое комплексное число можно представить так:
$$w = r e^{i p}$$
подставляем в уравнение
$$r^{3} e^{3 i p} = 8$$
где
$$r = 2$$
- модуль комплексного числа
Подставляем r:
$$e^{3 i p} = 1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = 1$$
значит
$$\cos{\left(3 p \right)} = 1$$
и
$$\sin{\left(3 p \right)} = 0$$
тогда
$$p = \frac{2 \pi N}{3}$$
где N=0,1,2,3,...
Перебирая значения N и подставив p в формулу для w
Значит, решением будет для w:
$$w_{1} = 2$$
$$w_{2} = -1 - \sqrt{3} i$$
$$w_{3} = -1 + \sqrt{3} i$$
делаем обратную замену
$$w = z$$
$$z = w$$
Тогда, окончательный ответ:
$$z_{1} = 2$$
$$z_{2} = -1 - \sqrt{3} i$$
$$z_{3} = -1 + \sqrt{3} i$$
$$z_{2} = -1 - \sqrt{3} i$$
$$z_{3} = -1 + \sqrt{3} i$$
Сумма и произведение корней
[src] ___ ___
0 + 2 + -1 - I*\/ 3 + -1 + I*\/ 3
$$\left(\left(0 + 2\right) - \left(1 + \sqrt{3} i\right)\right) - \left(1 - \sqrt{3} i\right)$$
/ ___\ / ___\
1*2*\-1 - I*\/ 3 /*\-1 + I*\/ 3 /
$$1 \cdot 2 \left(-1 - \sqrt{3} i\right) \left(-1 + \sqrt{3} i\right)$$
Теорема Виета
это приведённое кубическое уравнение
$$p z^{2} + q z + v + z^{3} = 0$$
где
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 0$$
$$v = \frac{d}{a}$$
$$v = -8$$
Формулы Виета
$$z_{1} + z_{2} + z_{3} = - p$$
$$z_{1} z_{2} + z_{1} z_{3} + z_{2} z_{3} = q$$
$$z_{1} z_{2} z_{3} = v$$
$$z_{1} + z_{2} + z_{3} = 0$$
$$z_{1} z_{2} + z_{1} z_{3} + z_{2} z_{3} = 0$$
$$z_{1} z_{2} z_{3} = -8$$
z2 = -1.0 + 1.73205080756888*i
z3 = -1.0 - 1.73205080756888*i