z^3+4=0 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: z^3+4=0
Решение
Подробное решение
Дано уравнение
$$z^{3} + 4 = 0$$
Т.к. степень в ур-нии равна = 3 - не содержит чётного числа в числителе, то
ур-ние будет иметь один действительный корень.
Извлечём корень 3-й степени из обеих частей ур-ния:
Получим:
$$\sqrt[3]{z^{3}} = \sqrt[3]{-4}$$
или
$$z = \sqrt[3]{-1} \cdot 2^{\frac{2}{3}}$$
Раскрываем скобочки в правой части ур-ния
z = -1^1/3*2^2/3
Получим ответ: z = (-1)^(1/3)*2^(2/3)
Остальные 2 корня(ей) являются комплексными.
сделаем замену:
$$w = z$$
тогда ур-ние будет таким:
$$w^{3} = -4$$
Любое комплексное число можно представить так:
$$w = r e^{i p}$$
подставляем в уравнение
$$r^{3} e^{3 i p} = -4$$
где
$$r = 2^{\frac{2}{3}}$$
- модуль комплексного числа
Подставляем r:
$$e^{3 i p} = -1$$
Используя формулу Эйлера, найдём корни для p
$$i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = -1$$
значит
$$\cos{\left(3 p \right)} = -1$$
и
$$\sin{\left(3 p \right)} = 0$$
тогда
$$p = \frac{2 \pi N}{3} + \frac{\pi}{3}$$
где N=0,1,2,3,...
Перебирая значения N и подставив p в формулу для w
Значит, решением будет для w:
$$w_{1} = - 2^{\frac{2}{3}}$$
$$w_{2} = \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}$$
$$w_{3} = \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}$$
делаем обратную замену
$$w = z$$
$$z = w$$
Тогда, окончательный ответ:
$$z_{1} = - 2^{\frac{2}{3}}$$
$$z_{2} = \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}$$
$$z_{3} = \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}$$ $$z_{1} = - 2^{\frac{2}{3}}$$
2/3 2/3 ___
2 I*2 *\/ 3
z2 = ---- - ------------
2 2
$$z_{2} = \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}$$
2/3 2/3 ___
2 I*2 *\/ 3
z3 = ---- + ------------
2 2
$$z_{3} = \frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}$$
Сумма и произведение корней
[src] 2/3 2/3 ___ 2/3 2/3 ___
2/3 2 I*2 *\/ 3 2 I*2 *\/ 3
- 2 + ---- - ------------ + ---- + ------------
2 2 2 2
$$\left(- 2^{\frac{2}{3}} + \left(\frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}\right)\right) + \left(\frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}\right)$$
/ 2/3 2/3 ___\ / 2/3 2/3 ___\
2/3 |2 I*2 *\/ 3 | |2 I*2 *\/ 3 |
-2 *|---- - ------------|*|---- + ------------|
\ 2 2 / \ 2 2 /
$$- 2^{\frac{2}{3}} \left(\frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}\right) \left(\frac{2^{\frac{2}{3}}}{2} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{2}\right)$$
Теорема Виета
это приведённое кубическое уравнение
$$p z^{2} + q z + v + z^{3} = 0$$
где
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 0$$
$$v = \frac{d}{a}$$
$$v = 4$$
Формулы Виета
$$z_{1} + z_{2} + z_{3} = - p$$
$$z_{1} z_{2} + z_{1} z_{3} + z_{2} z_{3} = q$$
$$z_{1} z_{2} z_{3} = v$$
$$z_{1} + z_{2} + z_{3} = 0$$
$$z_{1} z_{2} + z_{1} z_{3} + z_{2} z_{3} = 0$$
$$z_{1} z_{2} z_{3} = 4$$
z1 = 0.7937005259841 - 1.3747296369986*i
z3 = 0.7937005259841 + 1.3747296369986*i