z^8=1-i (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: z^8=1-i
Решение
Подробное решение
Дано уравнениеz 8 = 1 − i z^{8} = 1 - i z 8 = 1 − i Т.к. степень в ур-нии равна = 8 и свободный член = 1 - i комплексное, зн. действительных решений у соотв. ур-ния не существует Остальные 8 корня(ей) являются комплексными. сделаем замену:w = z w = z w = z тогда ур-ние будет таким:w 8 = 1 − i w^{8} = 1 - i w 8 = 1 − i Любое комплексное число можно представить так:w = r e i p w = r e^{i p} w = r e i p подставляем в уравнениеr 8 e 8 i p = 1 − i r^{8} e^{8 i p} = 1 - i r 8 e 8 i p = 1 − i гдеr = 2 16 r = \sqrt[16]{2} r = 16 2 - модуль комплексного числа Подставляем r:e 8 i p = 2 ( 1 − i ) 2 e^{8 i p} = \frac{\sqrt{2} \left(1 - i\right)}{2} e 8 i p = 2 2 ( 1 − i ) Используя формулу Эйлера, найдём корни для pi sin ( 8 p ) + cos ( 8 p ) = 2 ( 1 − i ) 2 i \sin{\left(8 p \right)} + \cos{\left(8 p \right)} = \frac{\sqrt{2} \left(1 - i\right)}{2} i sin ( 8 p ) + cos ( 8 p ) = 2 2 ( 1 − i ) значитcos ( 8 p ) = 2 2 \cos{\left(8 p \right)} = \frac{\sqrt{2}}{2} cos ( 8 p ) = 2 2 иsin ( 8 p ) = − 2 2 \sin{\left(8 p \right)} = - \frac{\sqrt{2}}{2} sin ( 8 p ) = − 2 2 тогдаp = π N 4 − π 32 p = \frac{\pi N}{4} - \frac{\pi}{32} p = 4 π N − 32 π где N=0,1,2,3,... Перебирая значения N и подставив p в формулу для w Значит, решением будет для w:w 1 = − 2 16 sin ( π 32 ) − 2 16 i cos ( π 32 ) w_{1} = - \sqrt[16]{2} \sin{\left(\frac{\pi}{32} \right)} - \sqrt[16]{2} i \cos{\left(\frac{\pi}{32} \right)} w 1 = − 16 2 sin ( 32 π ) − 16 2 i cos ( 32 π ) w 2 = 2 16 sin ( π 32 ) + 2 16 i cos ( π 32 ) w_{2} = \sqrt[16]{2} \sin{\left(\frac{\pi}{32} \right)} + \sqrt[16]{2} i \cos{\left(\frac{\pi}{32} \right)} w 2 = 16 2 sin ( 32 π ) + 16 2 i cos ( 32 π ) w 3 = − 2 16 cos ( π 32 ) + 2 16 i sin ( π 32 ) w_{3} = - \sqrt[16]{2} \cos{\left(\frac{\pi}{32} \right)} + \sqrt[16]{2} i \sin{\left(\frac{\pi}{32} \right)} w 3 = − 16 2 cos ( 32 π ) + 16 2 i sin ( 32 π ) w 4 = 2 16 cos ( π 32 ) − 2 16 i sin ( π 32 ) w_{4} = \sqrt[16]{2} \cos{\left(\frac{\pi}{32} \right)} - \sqrt[16]{2} i \sin{\left(\frac{\pi}{32} \right)} w 4 = 16 2 cos ( 32 π ) − 16 2 i sin ( 32 π ) w 5 = − 2 9 16 sin ( π 32 ) 2 + 2 9 16 cos ( π 32 ) 2 − 2 9 16 i cos ( π 32 ) 2 − 2 9 16 i sin ( π 32 ) 2 w_{5} = - \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} i \cos{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} i \sin{\left(\frac{\pi}{32} \right)}}{2} w 5 = − 2 2 16 9 sin ( 32 π ) + 2 2 16 9 cos ( 32 π ) − 2 2 16 9 i cos ( 32 π ) − 2 2 16 9 i sin ( 32 π ) w 6 = 2 9 16 sin ( π 32 ) 2 + 2 9 16 cos ( π 32 ) 2 − 2 9 16 i sin ( π 32 ) 2 + 2 9 16 i cos ( π 32 ) 2 w_{6} = \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} i \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} i \cos{\left(\frac{\pi}{32} \right)}}{2} w 6 = 2 2 16 9 sin ( 32 π ) + 2 2 16 9 cos ( 32 π ) − 2 2 16 9 i sin ( 32 π ) + 2 2 16 9 i cos ( 32 π ) w 7 = − 2 9 16 cos ( π 32 ) 2 − 2 9 16 sin ( π 32 ) 2 − 2 9 16 i cos ( π 32 ) 2 + 2 9 16 i sin ( π 32 ) 2 w_{7} = - \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} i \cos{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} i \sin{\left(\frac{\pi}{32} \right)}}{2} w 7 = − 2 2 16 9 cos ( 32 π ) − 2 2 16 9 sin ( 32 π ) − 2 2 16 9 i cos ( 32 π ) + 2 2 16 9 i sin ( 32 π ) w 8 = − 2 9 16 cos ( π 32 ) 2 + 2 9 16 sin ( π 32 ) 2 + 2 9 16 i sin ( π 32 ) 2 + 2 9 16 i cos ( π 32 ) 2 w_{8} = - \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} i \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} i \cos{\left(\frac{\pi}{32} \right)}}{2} w 8 = − 2 2 16 9 cos ( 32 π ) + 2 2 16 9 sin ( 32 π ) + 2 2 16 9 i sin ( 32 π ) + 2 2 16 9 i cos ( 32 π ) делаем обратную заменуw = z w = z w = z z = w z = w z = w Тогда, окончательный ответ:z 1 = − 2 16 sin ( π 32 ) − 2 16 i cos ( π 32 ) z_{1} = - \sqrt[16]{2} \sin{\left(\frac{\pi}{32} \right)} - \sqrt[16]{2} i \cos{\left(\frac{\pi}{32} \right)} z 1 = − 16 2 sin ( 32 π ) − 16 2 i cos ( 32 π ) z 2 = 2 16 sin ( π 32 ) + 2 16 i cos ( π 32 ) z_{2} = \sqrt[16]{2} \sin{\left(\frac{\pi}{32} \right)} + \sqrt[16]{2} i \cos{\left(\frac{\pi}{32} \right)} z 2 = 16 2 sin ( 32 π ) + 16 2 i cos ( 32 π ) z 3 = − 2 16 cos ( π 32 ) + 2 16 i sin ( π 32 ) z_{3} = - \sqrt[16]{2} \cos{\left(\frac{\pi}{32} \right)} + \sqrt[16]{2} i \sin{\left(\frac{\pi}{32} \right)} z 3 = − 16 2 cos ( 32 π ) + 16 2 i sin ( 32 π ) z 4 = 2 16 cos ( π 32 ) − 2 16 i sin ( π 32 ) z_{4} = \sqrt[16]{2} \cos{\left(\frac{\pi}{32} \right)} - \sqrt[16]{2} i \sin{\left(\frac{\pi}{32} \right)} z 4 = 16 2 cos ( 32 π ) − 16 2 i sin ( 32 π ) z 5 = − 2 9 16 sin ( π 32 ) 2 + 2 9 16 cos ( π 32 ) 2 − 2 9 16 i cos ( π 32 ) 2 − 2 9 16 i sin ( π 32 ) 2 z_{5} = - \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} i \cos{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} i \sin{\left(\frac{\pi}{32} \right)}}{2} z 5 = − 2 2 16 9 sin ( 32 π ) + 2 2 16 9 cos ( 32 π ) − 2 2 16 9 i cos ( 32 π ) − 2 2 16 9 i sin ( 32 π ) z 6 = 2 9 16 sin ( π 32 ) 2 + 2 9 16 cos ( π 32 ) 2 − 2 9 16 i sin ( π 32 ) 2 + 2 9 16 i cos ( π 32 ) 2 z_{6} = \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} i \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} i \cos{\left(\frac{\pi}{32} \right)}}{2} z 6 = 2 2 16 9 sin ( 32 π ) + 2 2 16 9 cos ( 32 π ) − 2 2 16 9 i sin ( 32 π ) + 2 2 16 9 i cos ( 32 π ) z 7 = − 2 9 16 cos ( π 32 ) 2 − 2 9 16 sin ( π 32 ) 2 − 2 9 16 i cos ( π 32 ) 2 + 2 9 16 i sin ( π 32 ) 2 z_{7} = - \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} i \cos{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} i \sin{\left(\frac{\pi}{32} \right)}}{2} z 7 = − 2 2 16 9 cos ( 32 π ) − 2 2 16 9 sin ( 32 π ) − 2 2 16 9 i cos ( 32 π ) + 2 2 16 9 i sin ( 32 π ) z 8 = − 2 9 16 cos ( π 32 ) 2 + 2 9 16 sin ( π 32 ) 2 + 2 9 16 i sin ( π 32 ) 2 + 2 9 16 i cos ( π 32 ) 2 z_{8} = - \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} i \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} i \cos{\left(\frac{\pi}{32} \right)}}{2} z 8 = − 2 2 16 9 cos ( 32 π ) + 2 2 16 9 sin ( 32 π ) + 2 2 16 9 i sin ( 32 π ) + 2 2 16 9 i cos ( 32 π ) 16___ /pi\ 16___ /pi\
z1 = - \/ 2 *sin|--| - I*\/ 2 *cos|--|
\32/ \32/ z 1 = − 2 16 sin ( π 32 ) − 2 16 i cos ( π 32 ) z_{1} = - \sqrt[16]{2} \sin{\left(\frac{\pi}{32} \right)} - \sqrt[16]{2} i \cos{\left(\frac{\pi}{32} \right)} z 1 = − 16 2 sin ( 32 π ) − 16 2 i cos ( 32 π ) 16___ /pi\ 16___ /pi\
z2 = \/ 2 *sin|--| + I*\/ 2 *cos|--|
\32/ \32/ z 2 = 2 16 sin ( π 32 ) + 2 16 i cos ( π 32 ) z_{2} = \sqrt[16]{2} \sin{\left(\frac{\pi}{32} \right)} + \sqrt[16]{2} i \cos{\left(\frac{\pi}{32} \right)} z 2 = 16 2 sin ( 32 π ) + 16 2 i cos ( 32 π ) 16___ /pi\ 16___ /pi\
z3 = - \/ 2 *cos|--| + I*\/ 2 *sin|--|
\32/ \32/ z 3 = − 2 16 cos ( π 32 ) + 2 16 i sin ( π 32 ) z_{3} = - \sqrt[16]{2} \cos{\left(\frac{\pi}{32} \right)} + \sqrt[16]{2} i \sin{\left(\frac{\pi}{32} \right)} z 3 = − 16 2 cos ( 32 π ) + 16 2 i sin ( 32 π ) 16___ /pi\ 16___ /pi\
z4 = \/ 2 *cos|--| - I*\/ 2 *sin|--|
\32/ \32/ z 4 = 2 16 cos ( π 32 ) − 2 16 i sin ( π 32 ) z_{4} = \sqrt[16]{2} \cos{\left(\frac{\pi}{32} \right)} - \sqrt[16]{2} i \sin{\left(\frac{\pi}{32} \right)} z 4 = 16 2 cos ( 32 π ) − 16 2 i sin ( 32 π ) / 9/16 /pi\ 9/16 /pi\\ 9/16 /pi\ 9/16 /pi\
| 2 *cos|--| 2 *sin|--|| 2 *cos|--| 2 *sin|--|
| \32/ \32/| \32/ \32/
z5 = I*|- ------------- - -------------| + ------------- - -------------
\ 2 2 / 2 2 z 5 = − 2 9 16 sin ( π 32 ) 2 + 2 9 16 cos ( π 32 ) 2 + i ( − 2 9 16 cos ( π 32 ) 2 − 2 9 16 sin ( π 32 ) 2 ) z_{5} = - \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} + i \left(- \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2}\right) z 5 = − 2 2 16 9 sin ( 32 π ) + 2 2 16 9 cos ( 32 π ) + i ( − 2 2 16 9 cos ( 32 π ) − 2 2 16 9 sin ( 32 π ) ) / 9/16 /pi\ 9/16 /pi\\ 9/16 /pi\ 9/16 /pi\
|2 *cos|--| 2 *sin|--|| 2 *cos|--| 2 *sin|--|
| \32/ \32/| \32/ \32/
z6 = I*|------------- - -------------| + ------------- + -------------
\ 2 2 / 2 2 z 6 = 2 9 16 sin ( π 32 ) 2 + 2 9 16 cos ( π 32 ) 2 + i ( − 2 9 16 sin ( π 32 ) 2 + 2 9 16 cos ( π 32 ) 2 ) z_{6} = \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} + i \left(- \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2}\right) z 6 = 2 2 16 9 sin ( 32 π ) + 2 2 16 9 cos ( 32 π ) + i ( − 2 2 16 9 sin ( 32 π ) + 2 2 16 9 cos ( 32 π ) ) / 9/16 /pi\ 9/16 /pi\\ 9/16 /pi\ 9/16 /pi\
|2 *sin|--| 2 *cos|--|| 2 *cos|--| 2 *sin|--|
| \32/ \32/| \32/ \32/
z7 = I*|------------- - -------------| - ------------- - -------------
\ 2 2 / 2 2 z 7 = − 2 9 16 cos ( π 32 ) 2 − 2 9 16 sin ( π 32 ) 2 + i ( − 2 9 16 cos ( π 32 ) 2 + 2 9 16 sin ( π 32 ) 2 ) z_{7} = - \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} - \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + i \left(- \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2}\right) z 7 = − 2 2 16 9 cos ( 32 π ) − 2 2 16 9 sin ( 32 π ) + i ( − 2 2 16 9 cos ( 32 π ) + 2 2 16 9 sin ( 32 π ) ) / 9/16 /pi\ 9/16 /pi\\ 9/16 /pi\ 9/16 /pi\
|2 *cos|--| 2 *sin|--|| 2 *sin|--| 2 *cos|--|
| \32/ \32/| \32/ \32/
z8 = I*|------------- + -------------| + ------------- - -------------
\ 2 2 / 2 2 z 8 = − 2 9 16 cos ( π 32 ) 2 + 2 9 16 sin ( π 32 ) 2 + i ( 2 9 16 sin ( π 32 ) 2 + 2 9 16 cos ( π 32 ) 2 ) z_{8} = - \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + i \left(\frac{2^{\frac{9}{16}} \sin{\left(\frac{\pi}{32} \right)}}{2} + \frac{2^{\frac{9}{16}} \cos{\left(\frac{\pi}{32} \right)}}{2}\right) z 8 = − 2 2 16 9 cos ( 32 π ) + 2 2 16 9 sin ( 32 π ) + i ( 2 2 16 9 sin ( 32 π ) + 2 2 16 9 cos ( 32 π ) ) z1 = 0.662480274400119 - 0.807234549989035*i z2 = -0.662480274400119 + 0.807234549989035*i z3 = 0.807234549989035 + 0.662480274400119*i z4 = -0.807234549989035 - 0.662480274400119*i z5 = -0.102356729874669 - 1.03924531873597*i z6 = 1.03924531873597 - 0.102356729874669*i z7 = 0.102356729874669 + 1.03924531873597*i z8 = -1.03924531873597 + 0.102356729874669*i