Сумма и произведение корней
[src] ___ ___
1 I*\/ 3 1 I*\/ 3
1 + - - - ------- + - - + -------
2 2 2 2
$$\left(1 + \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right)\right) + \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right)$$
/ ___\ / ___\
| 1 I*\/ 3 | | 1 I*\/ 3 |
|- - - -------|*|- - + -------|
\ 2 2 / \ 2 2 /
$$\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right)$$
Теорема Виета
перепишем уравнение
$$1 - x^{3} = 0$$
из
$$a x^{3} + b x^{2} + c x + d = 0$$
как приведённое кубическое уравнение
$$x^{3} + \frac{b x^{2}}{a} + \frac{c x}{a} + \frac{d}{a} = 0$$
$$x^{3} - 1 = 0$$
$$p x^{2} + q x + v + x^{3} = 0$$
где
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 0$$
$$v = \frac{d}{a}$$
$$v = -1$$
Формулы Виета
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = 0$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 0$$
$$x_{1} x_{2} x_{3} = -1$$