Теорема Виета
перепишем уравнение
$$16 - y^{2} = 0$$
из
$$a y^{2} + b y + c = 0$$
как приведённое квадратное уравнение
$$y^{2} + \frac{b y}{a} + \frac{c}{a} = 0$$
$$y^{2} - 16 = 0$$
$$p y + q + y^{2} = 0$$
где
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = -16$$
Формулы Виета
$$y_{1} + y_{2} = - p$$
$$y_{1} y_{2} = q$$
$$y_{1} + y_{2} = 0$$
$$y_{1} y_{2} = -16$$