Сумма и произведение корней
[src] ___ ___
3 3*I*\/ 3 3 3*I*\/ 3
-3 + - - --------- + - + ---------
2 2 2 2
$$\left(-3 + \left(\frac{3}{2} - \frac{3 \sqrt{3} i}{2}\right)\right) + \left(\frac{3}{2} + \frac{3 \sqrt{3} i}{2}\right)$$
/ ___\ / ___\
|3 3*I*\/ 3 | |3 3*I*\/ 3 |
-3*|- - ---------|*|- + ---------|
\2 2 / \2 2 /
$$- 3 \left(\frac{3}{2} - \frac{3 \sqrt{3} i}{2}\right) \left(\frac{3}{2} + \frac{3 \sqrt{3} i}{2}\right)$$
Теорема Виета
это приведённое кубическое уравнение
$$p z^{2} + q z + v + z^{3} = 0$$
где
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 0$$
$$v = \frac{d}{a}$$
$$v = 27$$
Формулы Виета
$$z_{1} + z_{2} + z_{3} = - p$$
$$z_{1} z_{2} + z_{1} z_{3} + z_{2} z_{3} = q$$
$$z_{1} z_{2} z_{3} = v$$
$$z_{1} + z_{2} + z_{3} = 0$$
$$z_{1} z_{2} + z_{1} z_{3} + z_{2} z_{3} = 0$$
$$z_{1} z_{2} z_{3} = 27$$