Сумма корней sin(x)/2=1

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Решение

    Сумма и произведение корней [src]
    сумма
    pi - re(asin(2)) - I*im(asin(2)) + I*im(asin(2)) + re(asin(2))
    (re(asin(2))+iim(asin(2)))+(re(asin(2))+πiim(asin(2)))\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) + \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)
    =
    pi
    π\pi
    произведение
    (pi - re(asin(2)) - I*im(asin(2)))*(I*im(asin(2)) + re(asin(2)))
    (re(asin(2))+iim(asin(2)))(re(asin(2))+πiim(asin(2)))\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)
    =
    -(I*im(asin(2)) + re(asin(2)))*(-pi + I*im(asin(2)) + re(asin(2)))
    (re(asin(2))+iim(asin(2)))(π+re(asin(2))+iim(asin(2)))- \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)