Сумма и произведение корней
[src] _________________ _________________ _________________ _________________
4 / 2 2 /atan2(im(c), re(c))\ 4 / 2 2 /atan2(im(c), re(c))\ 4 / 2 2 /atan2(im(c), re(c))\ 4 / 2 2 /atan2(im(c), re(c))\
- \/ im (c) + re (c) *cos|-------------------| - I*\/ im (c) + re (c) *sin|-------------------| + \/ im (c) + re (c) *cos|-------------------| + I*\/ im (c) + re (c) *sin|-------------------|
\ 2 / \ 2 / \ 2 / \ 2 /
$$\left(- i \sqrt[4]{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(c\right)},\operatorname{re}{\left(c\right)} \right)}}{2} \right)} - \sqrt[4]{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(c\right)},\operatorname{re}{\left(c\right)} \right)}}{2} \right)}\right) + \left(i \sqrt[4]{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(c\right)},\operatorname{re}{\left(c\right)} \right)}}{2} \right)} + \sqrt[4]{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(c\right)},\operatorname{re}{\left(c\right)} \right)}}{2} \right)}\right)$$
/ _________________ _________________ \ / _________________ _________________ \
| 4 / 2 2 /atan2(im(c), re(c))\ 4 / 2 2 /atan2(im(c), re(c))\| |4 / 2 2 /atan2(im(c), re(c))\ 4 / 2 2 /atan2(im(c), re(c))\|
|- \/ im (c) + re (c) *cos|-------------------| - I*\/ im (c) + re (c) *sin|-------------------||*|\/ im (c) + re (c) *cos|-------------------| + I*\/ im (c) + re (c) *sin|-------------------||
\ \ 2 / \ 2 // \ \ 2 / \ 2 //
$$\left(- i \sqrt[4]{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(c\right)},\operatorname{re}{\left(c\right)} \right)}}{2} \right)} - \sqrt[4]{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(c\right)},\operatorname{re}{\left(c\right)} \right)}}{2} \right)}\right) \left(i \sqrt[4]{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(c\right)},\operatorname{re}{\left(c\right)} \right)}}{2} \right)} + \sqrt[4]{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(\operatorname{im}{\left(c\right)},\operatorname{re}{\left(c\right)} \right)}}{2} \right)}\right)$$
_________________
/ 2 2 I*atan2(im(c), re(c))
-\/ im (c) + re (c) *e
$$- \sqrt{\left(\operatorname{re}{\left(c\right)}\right)^{2} + \left(\operatorname{im}{\left(c\right)}\right)^{2}} e^{i \operatorname{atan_{2}}{\left(\operatorname{im}{\left(c\right)},\operatorname{re}{\left(c\right)} \right)}}$$