Решите дифференциальное уравнение 2y``+y`-3y=0 (2 у `` плюс у ` минус 3 у равно 0) - различные методы решения и порядка дифференциальных уравнений [Есть ответ!].

Дифференциальное уравнение 2y``+y`-3y=0

Преподаватель очень удивится увидев твоё верное решение 😼

с неизвестной функцией  ()
v

Для задачи Коши:

y() =
y'() =
y''() =
y'''() =
y''''() =
График: от до

    Решение

    Вы ввели [src]
                  2                     
                 d          d           
    -3*y(x) + 2*---(y(x)) + --(y(x)) = 0
                  2         dx          
                dx                      
    $$- 3 y{\left(x \right)} + \frac{d}{d x} y{\left(x \right)} + 2 \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Подробное решение
    Разделим обе части ур-ния на множитель при производной y'':
    $$2$$
    Получим уравнение:
    $$- \frac{3 y{\left(x \right)}}{2} + \frac{\frac{d}{d x} y{\left(x \right)}}{2} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Это дифф. уравнение имеет вид:
    y'' + p*y' + q*y = 0,

    где
    $$p = \frac{1}{2}$$
    $$q = - \frac{3}{2}$$
    Называется линейным однородным
    дифф. ур-нием 2-го порядка с постоянными коэффициентами.
    Решить это ур-ние не представляет особой сложности
    Решим сначала соответствующее линейное однородное ур-ние
    y'' + p*y' + q*y = 0

    Сначала отыскиваем корни характеристического ур-ния
    $$q + \left(k^{2} + k p\right) = 0$$
    В нашем случае характ. ур-ние будет иметь вид:
    $$k^{2} + \frac{k}{2} - \frac{3}{2} = 0$$
    Подробное решение простого уравнения
    - это простое квадратное ур-ние
    Корни этого ур-ния:
    $$k_{1} = - \frac{3}{2}$$
    $$k_{2} = 1$$
    Т.к. характ. ур-ние имеет два корня,
    и корни не имеют комплексный вид, то
    решение соотв. дифф. ур-ния имеет вид:
    $$y{\left(x \right)} = C_{1} e^{k_{1} x} + C_{2} e^{k_{2} x}$$
    Получаем окончательный ответ:
    $$y{\left(x \right)} = C_{1} e^{- \frac{3 x}{2}} + C_{2} e^{x}$$
    Ответ [src]
               -3*x        
               ----        
                2         x
    y(x) = C1*e     + C2*e 
    $$y{\left(x \right)} = C_{1} e^{- \frac{3 x}{2}} + C_{2} e^{x}$$
    Классификация
    nth linear constant coeff homogeneous
    2nd power series ordinary