Решите дифференциальное уравнение y′′−5y′+6y=0 (у ′′−5 у ′ плюс 6 у равно 0) - различные методы решения и порядка дифференциальных уравнений [Есть ответ!].

Дифференциальное уравнение y′′−5y′+6y=0

Преподаватель очень удивится увидев твоё верное решение 😼

с неизвестной функцией  ()
v

Для задачи Коши:

y() =
y'() =
y''() =
y'''() =
y''''() =
График: от до

    Решение

    Вы ввели [src]
                              2          
        d                    d           
    - 5*--(y(x)) + 6*y(x) + ---(y(x)) = 0
        dx                    2          
                            dx           
    $$6 y{\left(x \right)} - 5 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Подробное решение
    Дано уравнение:
    $$6 y{\left(x \right)} - 5 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Это дифф. уравнение имеет вид:
    y'' + p*y' + q*y = 0,

    где
    $$p = -5$$
    $$q = 6$$
    Называется линейным однородным
    дифф. ур-нием 2-го порядка с постоянными коэффициентами.
    Решить это ур-ние не представляет особой сложности
    Решим сначала соответствующее линейное однородное ур-ние
    y'' + p*y' + q*y = 0

    Сначала отыскиваем корни характеристического ур-ния
    $$q + \left(k^{2} + k p\right) = 0$$
    В нашем случае характ. ур-ние будет иметь вид:
    $$k^{2} - 5 k + 6 = 0$$
    Подробное решение простого уравнения
    - это простое квадратное ур-ние
    Корни этого ур-ния:
    $$k_{1} = 2$$
    $$k_{2} = 3$$
    Т.к. характ. ур-ние имеет два корня,
    и корни не имеют комплексный вид, то
    решение соотв. дифф. ур-ния имеет вид:
    $$y{\left(x \right)} = C_{1} e^{k_{1} x} + C_{2} e^{k_{2} x}$$
    Получаем окончательный ответ:
    $$y{\left(x \right)} = C_{1} e^{2 x} + C_{2} e^{3 x}$$
    Ответ [src]
           /         x\  2*x
    y(x) = \C1 + C2*e /*e   
    $$y{\left(x \right)} = \left(C_{1} + C_{2} e^{x}\right) e^{2 x}$$
    Классификация
    nth linear constant coeff homogeneous
    2nd power series ordinary