Решите дифференциальное уравнение y”-4y’+13y=0 (у ” минус 4 у ’ плюс 13 у равно 0) - различные методы решения и порядка дифференциальных уравнений [Есть ответ!].

Дифференциальное уравнение y”-4y’+13y=0

Преподаватель очень удивится увидев твоё верное решение 😼

с неизвестной функцией  ()
v

Для задачи Коши:

y() =
y'() =
y''() =
y'''() =
y''''() =
График: от до

    Решение

    Вы ввели [src]
                               2          
        d                     d           
    - 4*--(y(x)) + 13*y(x) + ---(y(x)) = 0
        dx                     2          
                             dx           
    $$13 y{\left(x \right)} - 4 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Подробное решение
    Дано уравнение:
    $$13 y{\left(x \right)} - 4 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Это дифф. уравнение имеет вид:
    y'' + p*y' + q*y = 0,

    где
    $$p = -4$$
    $$q = 13$$
    Называется линейным однородным
    дифф. ур-нием 2-го порядка с постоянными коэффициентами.
    Решить это ур-ние не представляет особой сложности
    Решим сначала соответствующее линейное однородное ур-ние
    y'' + p*y' + q*y = 0

    Сначала отыскиваем корни характеристического ур-ния
    $$q + \left(k^{2} + k p\right) = 0$$
    В нашем случае характ. ур-ние будет иметь вид:
    $$k^{2} - 4 k + 13 = 0$$
    Подробное решение простого уравнения
    - это простое квадратное ур-ние
    Корни этого ур-ния:
    $$k_{1} = 2 - 3 i$$
    $$k_{2} = 2 + 3 i$$
    Т.к. характ. ур-ние имеет два корня,
    решение соотв. дифф. ур-ния имеет вид:
    $$y{\left(x \right)} = C_{1} e^{k_{1} x} + C_{2} e^{k_{2} x}$$
    Получаем окончательный ответ:
    $$y{\left(x \right)} = C_{1} e^{x \left(2 - 3 i\right)} + C_{2} e^{x \left(2 + 3 i\right)}$$
    Ответ [src]
                                        2*x
    y(x) = (C1*sin(3*x) + C2*cos(3*x))*e   
    $$y{\left(x \right)} = \left(C_{1} \sin{\left(3 x \right)} + C_{2} \cos{\left(3 x \right)}\right) e^{2 x}$$
    Классификация
    factorable
    nth linear constant coeff homogeneous
    2nd power series ordinary