Решите дифференциальное уравнение y"-7y=0 (у " минус 7 у равно 0) - различные методы решения и порядка дифференциальных уравнений [Есть ответ!].

Дифференциальное уравнение y"-7y=0

Преподаватель очень удивится увидев твоё верное решение 😼

с неизвестной функцией  ()
v

Для задачи Коши:

y() =
y'() =
y''() =
y'''() =
y''''() =
График: от до

    Решение

    Вы ввели [src]
                2          
               d           
    -7*y(x) + ---(y(x)) = 0
                2          
              dx           
    $$- 7 y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Подробное решение
    Дано уравнение:
    $$- 7 y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Это дифф. уравнение имеет вид:
    y'' + p*y' + q*y = 0,

    где
    $$p = 0$$
    $$q = -7$$
    Называется линейным однородным
    дифф. ур-нием 2-го порядка с постоянными коэффициентами.
    Решить это ур-ние не представляет особой сложности
    Решим сначала соответствующее линейное однородное ур-ние
    y'' + p*y' + q*y = 0

    Сначала отыскиваем корни характеристического ур-ния
    $$q + \left(k^{2} + k p\right) = 0$$
    В нашем случае характ. ур-ние будет иметь вид:
    $$k^{2} - 7 = 0$$
    Подробное решение простого уравнения
    - это простое квадратное ур-ние
    Корни этого ур-ния:
    $$k_{1} = - \sqrt{7}$$
    $$k_{2} = \sqrt{7}$$
    Т.к. характ. ур-ние имеет два корня,
    и корни не имеют комплексный вид, то
    решение соотв. дифф. ур-ния имеет вид:
    $$y{\left(x \right)} = C_{1} e^{k_{1} x} + C_{2} e^{k_{2} x}$$
    Получаем окончательный ответ:
    $$y{\left(x \right)} = C_{1} e^{- \sqrt{7} x} + C_{2} e^{\sqrt{7} x}$$
    Ответ [src]
                    ___           ___
               -x*\/ 7        x*\/ 7 
    y(x) = C1*e         + C2*e       
    $$y{\left(x \right)} = C_{1} e^{- \sqrt{7} x} + C_{2} e^{\sqrt{7} x}$$
    Классификация
    nth linear constant coeff homogeneous
    2nd power series ordinary
    2nd nonlinear autonomous conserved
    2nd nonlinear autonomous conserved Integral