Решите дифференциальное уравнение y’’+3y’+2y=0 (у ’’ плюс 3 у ’ плюс 2 у равно 0) - различные методы решения и порядка дифференциальных уравнений [Есть ответ!].

Дифференциальное уравнение y’’+3y’+2y=0

Преподаватель очень удивится увидев твоё верное решение 😼

с неизвестной функцией  ()
v

Для задачи Коши:

y() =
y'() =
y''() =
y'''() =
y''''() =
График: от до

    Решение

    Вы ввели [src]
                            2          
               d           d           
    2*y(x) + 3*--(y(x)) + ---(y(x)) = 0
               dx           2          
                          dx           
    $$2 y{\left(x \right)} + 3 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Подробное решение
    Дано уравнение:
    $$2 y{\left(x \right)} + 3 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Это дифф. уравнение имеет вид:
    y'' + p*y' + q*y = 0,

    где
    $$p = 3$$
    $$q = 2$$
    Называется линейным однородным
    дифф. ур-нием 2-го порядка с постоянными коэффициентами.
    Решить это ур-ние не представляет особой сложности
    Решим сначала соответствующее линейное однородное ур-ние
    y'' + p*y' + q*y = 0

    Сначала отыскиваем корни характеристического ур-ния
    $$q + \left(k^{2} + k p\right) = 0$$
    В нашем случае характ. ур-ние будет иметь вид:
    $$k^{2} + 3 k + 2 = 0$$
    Подробное решение простого уравнения
    - это простое квадратное ур-ние
    Корни этого ур-ния:
    $$k_{1} = -2$$
    $$k_{2} = -1$$
    Т.к. характ. ур-ние имеет два корня,
    и корни не имеют комплексный вид, то
    решение соотв. дифф. ур-ния имеет вид:
    $$y{\left(x \right)} = C_{1} e^{k_{1} x} + C_{2} e^{k_{2} x}$$
    Получаем окончательный ответ:
    $$y{\left(x \right)} = C_{1} e^{- 2 x} + C_{2} e^{- x}$$
    Ответ [src]
           /         -x\  -x
    y(x) = \C1 + C2*e  /*e  
    $$y{\left(x \right)} = \left(C_{1} + C_{2} e^{- x}\right) e^{- x}$$
    Классификация
    nth linear constant coeff homogeneous
    2nd power series ordinary