Дано уравнение: 5dxdy(x)+dx2d2y(x)=0 Это дифф. уравнение имеет вид:
y'' + p*y' + q*y = 0,
где p=5 q=0 Называется линейным однородным дифф. ур-нием 2-го порядка с постоянными коэффициентами. Решить это ур-ние не представляет особой сложности Сначала отыскиваем корни характеристического ур-ния q+(k2+kp)=0 В нашем случае характ. ур-ние будет иметь вид: k2+5k=0 Подробное решение простого уравнения - это простое квадратное ур-ние Корни этого ур-ния: k1=−5 k2=0 Т.к. характ. ур-ние имеет два корня, и корни не имеют комплексный вид, то решение соотв. дифф. ур-ния имеет вид: y(x)=C1ek1x+C2ek2x Получаем окончательный ответ: y(x)=C1e−5x+C2