Решите дифференциальное уравнение y’’+6y’+25y=0 (у ’’ плюс 6 у ’ плюс 25 у равно 0) - различные методы решения и порядка дифференциальных уравнений [Есть ответ!].

Дифференциальное уравнение y’’+6y’+25y=0

Преподаватель очень удивится увидев твоё верное решение 😼

с неизвестной функцией  ()
v

Для задачи Коши:

y() =
y'() =
y''() =
y'''() =
y''''() =
График: от до

    Решение

    Вы ввели [src]
                             2          
      d                     d           
    6*--(y(x)) + 25*y(x) + ---(y(x)) = 0
      dx                     2          
                           dx           
    $$25 y{\left(x \right)} + 6 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Подробное решение
    Дано уравнение:
    $$25 y{\left(x \right)} + 6 \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Это дифф. уравнение имеет вид:
    y'' + p*y' + q*y = 0,

    где
    $$p = 6$$
    $$q = 25$$
    Называется линейным однородным
    дифф. ур-нием 2-го порядка с постоянными коэффициентами.
    Решить это ур-ние не представляет особой сложности
    Решим сначала соответствующее линейное однородное ур-ние
    y'' + p*y' + q*y = 0

    Сначала отыскиваем корни характеристического ур-ния
    $$q + \left(k^{2} + k p\right) = 0$$
    В нашем случае характ. ур-ние будет иметь вид:
    $$k^{2} + 6 k + 25 = 0$$
    Подробное решение простого уравнения
    - это простое квадратное ур-ние
    Корни этого ур-ния:
    $$k_{1} = -3 - 4 i$$
    $$k_{2} = -3 + 4 i$$
    Т.к. характ. ур-ние имеет два корня,
    решение соотв. дифф. ур-ния имеет вид:
    $$y{\left(x \right)} = C_{1} e^{k_{1} x} + C_{2} e^{k_{2} x}$$
    Получаем окончательный ответ:
    $$y{\left(x \right)} = C_{1} e^{x \left(-3 - 4 i\right)} + C_{2} e^{x \left(-3 + 4 i\right)}$$
    Ответ [src]
                                        -3*x
    y(x) = (C1*sin(4*x) + C2*cos(4*x))*e    
    $$y{\left(x \right)} = \left(C_{1} \sin{\left(4 x \right)} + C_{2} \cos{\left(4 x \right)}\right) e^{- 3 x}$$
    Классификация
    factorable
    nth linear constant coeff homogeneous
    2nd power series ordinary