Решите дифференциальное уравнение y’’+y’+y=0 (у ’’ плюс у ’ плюс у равно 0) - различные методы решения и порядка дифференциальных уравнений [Есть ответ!].

Дифференциальное уравнение y’’+y’+y=0

Преподаватель очень удивится увидев твоё верное решение 😼

с неизвестной функцией  ()
v

Для задачи Коши:

y() =
y'() =
y''() =
y'''() =
y''''() =
График: от до

    Решение

    Вы ввели [src]
                 2                 
    d           d                  
    --(y(x)) + ---(y(x)) + y(x) = 0
    dx           2                 
               dx                  
    $$y{\left(x \right)} + \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Подробное решение
    Дано уравнение:
    $$y{\left(x \right)} + \frac{d}{d x} y{\left(x \right)} + \frac{d^{2}}{d x^{2}} y{\left(x \right)} = 0$$
    Это дифф. уравнение имеет вид:
    y'' + p*y' + q*y = 0,

    где
    $$p = 1$$
    $$q = 1$$
    Называется линейным однородным
    дифф. ур-нием 2-го порядка с постоянными коэффициентами.
    Решить это ур-ние не представляет особой сложности
    Решим сначала соответствующее линейное однородное ур-ние
    y'' + p*y' + q*y = 0

    Сначала отыскиваем корни характеристического ур-ния
    $$q + \left(k^{2} + k p\right) = 0$$
    В нашем случае характ. ур-ние будет иметь вид:
    $$k^{2} + k + 1 = 0$$
    Подробное решение простого уравнения
    - это простое квадратное ур-ние
    Корни этого ур-ния:
    $$k_{1} = - \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
    $$k_{2} = - \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
    Т.к. характ. ур-ние имеет два корня,
    решение соотв. дифф. ур-ния имеет вид:
    $$y{\left(x \right)} = e^{k_{1} x} C_{1} + e^{k_{2} x} C_{2}$$
    Получаем окончательный ответ:
    $$y{\left(x \right)} = C_{1} e^{x \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right)} + C_{2} e^{x \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right)}$$
    Ответ [src]
                                                -x 
           /      /    ___\         /    ___\\  ---
           |      |x*\/ 3 |         |x*\/ 3 ||   2 
    y(x) = |C1*sin|-------| + C2*cos|-------||*e   
           \      \   2   /         \   2   //     
    $$y{\left(x \right)} = \left(C_{1} \sin{\left(\frac{\sqrt{3} x}{2} \right)} + C_{2} \cos{\left(\frac{\sqrt{3} x}{2} \right)}\right) e^{- \frac{x}{2}}$$
    Классификация
    nth linear constant coeff homogeneous
    2nd power series ordinary