Подстановка условия
[src] (10*cos(a) - 2*sin(a) + 10)/(sin(a) - 5*cos(a) + 5) при a = 2 10*cos(a) - 2*sin(a) + 10
-------------------------
sin(a) - 5*cos(a) + 5 − 2 sin ( a ) + 10 cos ( a ) + 10 sin ( a ) − 5 cos ( a ) + 5 \frac{- 2 \sin{\left(a \right)} + 10 \cos{\left(a \right)} + 10}{\sin{\left(a \right)} - 5 \cos{\left(a \right)} + 5} sin ( a ) − 5 cos ( a ) + 5 − 2 sin ( a ) + 10 cos ( a ) + 10 2*(5 - sin(a) + 5*cos(a))
-------------------------
5 - 5*cos(a) + sin(a) 2 ( − sin ( a ) + 5 cos ( a ) + 5 ) sin ( a ) − 5 cos ( a ) + 5 \frac{2 \left(- \sin{\left(a \right)} + 5 \cos{\left(a \right)} + 5\right)}{\sin{\left(a \right)} - 5 \cos{\left(a \right)} + 5} sin ( a ) − 5 cos ( a ) + 5 2 ( − sin ( a ) + 5 cos ( a ) + 5 ) 2*(5 - sin((2)) + 5*cos((2)))
-----------------------------
5 - 5*cos((2)) + sin((2)) 2 ( − sin ( ( 2 ) ) + 5 cos ( ( 2 ) ) + 5 ) sin ( ( 2 ) ) − 5 cos ( ( 2 ) ) + 5 \frac{2 \left(- \sin{\left((2) \right)} + 5 \cos{\left((2) \right)} + 5\right)}{\sin{\left((2) \right)} - 5 \cos{\left((2) \right)} + 5} sin ( ( 2 ) ) − 5 cos ( ( 2 ) ) + 5 2 ( − sin ( ( 2 ) ) + 5 cos ( ( 2 ) ) + 5 ) 2*(5 - sin(2) + 5*cos(2))
-------------------------
5 - 5*cos(2) + sin(2) 2 ⋅ ( 5 cos ( 2 ) − sin ( 2 ) + 5 ) sin ( 2 ) − 5 cos ( 2 ) + 5 \frac{2 \cdot \left(5 \cos{\left(2 \right)} - \sin{\left(2 \right)} + 5\right)}{\sin{\left(2 \right)} - 5 \cos{\left(2 \right)} + 5} sin ( 2 ) − 5 cos ( 2 ) + 5 2 ⋅ ( 5 cos ( 2 ) − sin ( 2 ) + 5 )
Тригонометрическая часть
[src] // 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ || |
10 - 2*|< | + 10*|< / pi\ |
\\sin(a) otherwise / ||sin|a + --| otherwise |
\\ \ 2 / /
----------------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | // 0 for And(im(a) = 0, a mod pi = 0)\
5 - 5*|< / pi\ | + |< |
||sin|a + --| otherwise | \\sin(a) otherwise /
\\ \ 2 / / ( − 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ) + ( 10 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 sin ( a + π 2 ) otherwise ) ) + 10 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 sin ( a + π 2 ) otherwise ) ) + 5 \frac{\left(- 2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(10 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\sin{\left(a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + 10}{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\sin{\left(a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + 5} ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) − ( 5 ( { 1 sin ( a + 2 π ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) + 5 ( − 2 ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( 10 ( { 1 sin ( a + 2 π ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) + 10 // 1 for And(im(a) = 0, a mod 2*pi = 0)\
// 0 for And(im(a) = 0, a mod pi = 0)\ || |
|| | || 1 |
10 - 2*|< 1 | + 10*|<----------- otherwise |
||------ otherwise | || /pi \ |
\\csc(a) / ||csc|-- - a| |
\\ \2 / /
----------------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | // 0 for And(im(a) = 0, a mod pi = 0)\
|| 1 | || |
5 - 5*|<----------- otherwise | + |< 1 |
|| /pi \ | ||------ otherwise |
||csc|-- - a| | \\csc(a) /
\\ \2 / / ( − 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 csc ( a ) otherwise ) ) + ( 10 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 csc ( − a + π 2 ) otherwise ) ) + 10 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 csc ( a ) otherwise ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 csc ( − a + π 2 ) otherwise ) ) + 5 \frac{\left(- 2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(a \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(10 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + 10}{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(a \right)}} & \text{otherwise} \end{cases}\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + 5} ( { 0 c s c ( a ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) − ( 5 ( { 1 c s c ( − a + 2 π ) 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) + 5 ( − 2 ( { 0 c s c ( a ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( 10 ( { 1 c s c ( − a + 2 π ) 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) + 10 2 10
10 - ----------- + ------
/ pi\ sec(a)
sec|a - --|
\ 2 /
-------------------------
1 5
5 + ----------- - ------
/ pi\ sec(a)
sec|a - --|
\ 2 / 10 − 2 sec ( a − π 2 ) + 10 sec ( a ) 5 + 1 sec ( a − π 2 ) − 5 sec ( a ) \frac{10 - \frac{2}{\sec{\left(a - \frac{\pi}{2} \right)}} + \frac{10}{\sec{\left(a \right)}}}{5 + \frac{1}{\sec{\left(a - \frac{\pi}{2} \right)}} - \frac{5}{\sec{\left(a \right)}}} 5 + s e c ( a − 2 π ) 1 − s e c ( a ) 5 10 − s e c ( a − 2 π ) 2 + s e c ( a ) 10 // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
10 - 2*| ( − 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise otherwise ) ) + ( 10 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise otherwise ) ) + 10 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise otherwise ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise otherwise ) ) + 5 \frac{\left(- 2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(10 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + 10}{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + 5} ⎩ ⎨ ⎧ 0 { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise − 5 ⎩ ⎨ ⎧ 1 { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise + 5 − 2 ⎩ ⎨ ⎧ 0 { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise + 10 ⎩ ⎨ ⎧ 1 { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise + 10 2 10
10 - ------ + ------
csc(a) sec(a)
--------------------
1 5
5 + ------ - ------
csc(a) sec(a) 10 + 10 sec ( a ) − 2 csc ( a ) 5 − 5 sec ( a ) + 1 csc ( a ) \frac{10 + \frac{10}{\sec{\left(a \right)}} - \frac{2}{\csc{\left(a \right)}}}{5 - \frac{5}{\sec{\left(a \right)}} + \frac{1}{\csc{\left(a \right)}}} 5 − s e c ( a ) 5 + c s c ( a ) 1 10 + s e c ( a ) 10 − c s c ( a ) 2 // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| /a\ | || 2/a\ |
|| 2*cot|-| | ||-1 + cot |-| |
10 - 2*|< \2/ | + 10*|< \2/ |
||----------- otherwise | ||------------ otherwise |
|| 2/a\ | || 2/a\ |
||1 + cot |-| | ||1 + cot |-| |
\\ \2/ / \\ \2/ /
----------------------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
|| | || |
|| 2/a\ | || /a\ |
||-1 + cot |-| | || 2*cot|-| |
5 - 5*|< \2/ | + |< \2/ |
||------------ otherwise | ||----------- otherwise |
|| 2/a\ | || 2/a\ |
||1 + cot |-| | ||1 + cot |-| |
\\ \2/ / \\ \2/ / ( − 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise ) ) + ( 10 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cot 2 ( a 2 ) − 1 cot 2 ( a 2 ) + 1 otherwise ) ) + 10 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cot 2 ( a 2 ) − 1 cot 2 ( a 2 ) + 1 otherwise ) ) + 5 \frac{\left(- 2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(10 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + 10}{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + 5} ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise − 5 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 a ) + 1 c o t 2 ( 2 a ) − 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise + 5 − 2 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise + 10 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 a ) + 1 c o t 2 ( 2 a ) − 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise + 10 /a\ / 2/a\\
4*tan|-| 10*|1 - tan |-||
\2/ \ \2//
10 - ----------- + ----------------
2/a\ 2/a\
1 + tan |-| 1 + tan |-|
\2/ \2/
-----------------------------------
/ 2/a\\ /a\
5*|1 - tan |-|| 2*tan|-|
\ \2// \2/
5 - --------------- + -----------
2/a\ 2/a\
1 + tan |-| 1 + tan |-|
\2/ \2/ 10 ⋅ ( 1 − tan 2 ( a 2 ) ) tan 2 ( a 2 ) + 1 + 10 − 4 tan ( a 2 ) tan 2 ( a 2 ) + 1 − 5 ⋅ ( 1 − tan 2 ( a 2 ) ) tan 2 ( a 2 ) + 1 + 5 + 2 tan ( a 2 ) tan 2 ( a 2 ) + 1 \frac{\frac{10 \cdot \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} + 10 - \frac{4 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1}}{- \frac{5 \cdot \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} + 5 + \frac{2 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1}} − t a n 2 ( 2 a ) + 1 5 ⋅ ( 1 − t a n 2 ( 2 a ) ) + 5 + t a n 2 ( 2 a ) + 1 2 t a n ( 2 a ) t a n 2 ( 2 a ) + 1 10 ⋅ ( 1 − t a n 2 ( 2 a ) ) + 10 − t a n 2 ( 2 a ) + 1 4 t a n ( 2 a ) // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
10 - 2*|< | + 10*|< |
\\sin(a) otherwise / \\cos(a) otherwise /
-----------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
5 - 5*|< | + |< |
\\cos(a) otherwise / \\sin(a) otherwise / ( − 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) ) + ( 10 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) ) + 10 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 sin ( a ) otherwise ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) ) + 5 \frac{\left(- 2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(10 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + 10}{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + 5} ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) − ( 5 ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) + 5 ( − 2 ( { 0 sin ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( 10 ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) + 10 2 10
10 - ------ + -----------
csc(a) /pi \
csc|-- - a|
\2 /
-------------------------
1 5
5 + ------ - -----------
csc(a) /pi \
csc|-- - a|
\2 / 10 + 10 csc ( − a + π 2 ) − 2 csc ( a ) 5 − 5 csc ( − a + π 2 ) + 1 csc ( a ) \frac{10 + \frac{10}{\csc{\left(- a + \frac{\pi}{2} \right)}} - \frac{2}{\csc{\left(a \right)}}}{5 - \frac{5}{\csc{\left(- a + \frac{\pi}{2} \right)}} + \frac{1}{\csc{\left(a \right)}}} 5 − c s c ( − a + 2 π ) 5 + c s c ( a ) 1 10 + c s c ( − a + 2 π ) 10 − c s c ( a ) 2 // 0 for And(im(a) = 0, a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod 2*pi = 0)\
10 - 2*|< / pi\ | + 10*|< |
||cos|a - --| otherwise | \\cos(a) otherwise /
\\ \ 2 / /
----------------------------------------------------------------------------------------------------------
// 0 for And(im(a) = 0, a mod pi = 0)\
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ || |
5 - 5*|< | + |< / pi\ |
\\cos(a) otherwise / ||cos|a - --| otherwise |
\\ \ 2 / / ( − 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 cos ( a − π 2 ) otherwise ) ) + ( 10 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) ) + 10 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 cos ( a − π 2 ) otherwise ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cos ( a ) otherwise ) ) + 5 \frac{\left(- 2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + \left(10 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + 10}{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos{\left(a \right)} & \text{otherwise} \end{cases}\right)\right) + 5} ( { 0 cos ( a − 2 π ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) − ( 5 ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) + 5 ( − 2 ( { 0 cos ( a − 2 π ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( 10 ( { 1 cos ( a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) + 10 // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
|| /a\ | || 2/a\ |
|| 2*tan|-| | ||1 - tan |-| |
10 - 2*|< \2/ | + 10*|< \2/ |
||----------- otherwise | ||----------- otherwise |
|| 2/a\ | || 2/a\ |
||1 + tan |-| | ||1 + tan |-| |
\\ \2/ / \\ \2/ /
---------------------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
|| | || |
|| 2/a\ | || /a\ |
||1 - tan |-| | || 2*tan|-| |
5 - 5*|< \2/ | + |< \2/ |
||----------- otherwise | ||----------- otherwise |
|| 2/a\ | || 2/a\ |
||1 + tan |-| | ||1 + tan |-| |
\\ \2/ / \\ \2/ / ( − 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 tan ( a 2 ) tan 2 ( a 2 ) + 1 otherwise ) ) + ( 10 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 − tan 2 ( a 2 ) tan 2 ( a 2 ) + 1 otherwise ) ) + 10 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 tan ( a 2 ) tan 2 ( a 2 ) + 1 otherwise ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 − tan 2 ( a 2 ) tan 2 ( a 2 ) + 1 otherwise ) ) + 5 \frac{\left(- 2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(10 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + 10}{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{a}{2} \right)}}{\tan^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + 5} ⎩ ⎨ ⎧ 0 t a n 2 ( 2 a ) + 1 2 t a n ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise − 5 ⎩ ⎨ ⎧ 1 t a n 2 ( 2 a ) + 1 1 − t a n 2 ( 2 a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise + 5 − 2 ⎩ ⎨ ⎧ 0 t a n 2 ( 2 a ) + 1 2 t a n ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise + 10 ⎩ ⎨ ⎧ 1 t a n 2 ( 2 a ) + 1 1 − t a n 2 ( 2 a ) for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise + 10 // 0 for And(im(a) = 0, a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| 1 | || |
10 - 2*|<----------- otherwise | + 10*|< 1 |
|| / pi\ | ||------ otherwise |
||sec|a - --| | \\sec(a) /
\\ \ 2 / /
----------------------------------------------------------------------------------------------------------
// 0 for And(im(a) = 0, a mod pi = 0)\
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ || |
|| | || 1 |
5 - 5*|< 1 | + |<----------- otherwise |
||------ otherwise | || / pi\ |
\\sec(a) / ||sec|a - --| |
\\ \ 2 / / ( − 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 sec ( a − π 2 ) otherwise ) ) + ( 10 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 sec ( a ) otherwise ) ) + 10 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 1 sec ( a − π 2 ) otherwise ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 1 sec ( a ) otherwise ) ) + 5 \frac{\left(- 2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(10 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(a \right)}} & \text{otherwise} \end{cases}\right)\right) + 10}{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(a \right)}} & \text{otherwise} \end{cases}\right)\right) + 5} ( { 0 s e c ( a − 2 π ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) − ( 5 ( { 1 s e c ( a ) 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) + 5 ( − 2 ( { 0 s e c ( a − 2 π ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( 10 ( { 1 s e c ( a ) 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise ) ) + 10 / pi\
10 - 2*sin(a) + 10*sin|a + --|
\ 2 /
------------------------------
/ pi\
5 - 5*sin|a + --| + sin(a)
\ 2 / − 2 sin ( a ) + 10 sin ( a + π 2 ) + 10 sin ( a ) − 5 sin ( a + π 2 ) + 5 \frac{- 2 \sin{\left(a \right)} + 10 \sin{\left(a + \frac{\pi}{2} \right)} + 10}{\sin{\left(a \right)} - 5 \sin{\left(a + \frac{\pi}{2} \right)} + 5} sin ( a ) − 5 sin ( a + 2 π ) + 5 − 2 sin ( a ) + 10 sin ( a + 2 π ) + 10 / pi\
10 - 2*cos|a - --| + 10*cos(a)
\ 2 /
------------------------------
/ pi\
5 - 5*cos(a) + cos|a - --|
\ 2 / 10 cos ( a ) − 2 cos ( a − π 2 ) + 10 − 5 cos ( a ) + cos ( a − π 2 ) + 5 \frac{10 \cos{\left(a \right)} - 2 \cos{\left(a - \frac{\pi}{2} \right)} + 10}{- 5 \cos{\left(a \right)} + \cos{\left(a - \frac{\pi}{2} \right)} + 5} − 5 cos ( a ) + cos ( a − 2 π ) + 5 10 cos ( a ) − 2 cos ( a − 2 π ) + 10 // 0 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| | || |
||/ 0 for And(im(a) = 0, a mod pi = 0) | ||/ 1 for And(im(a) = 0, a mod 2*pi = 0) |
||| | ||| |
||| /a\ | ||| 2/a\ |
10 - 2*|<| 2*cot|-| | + 10*|<|-1 + cot |-| |
||< \2/ otherwise | ||< \2/ otherwise |
|||----------- otherwise | |||------------ otherwise |
||| 2/a\ | ||| 2/a\ |
|||1 + cot |-| | |||1 + cot |-| |
\\\ \2/ / \\\ \2/ /
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
// 1 for And(im(a) = 0, a mod 2*pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
|| | || |
||/ 1 for And(im(a) = 0, a mod 2*pi = 0) | ||/ 0 for And(im(a) = 0, a mod pi = 0) |
||| | ||| |
||| 2/a\ | ||| /a\ |
5 - 5*|<|-1 + cot |-| | + |<| 2*cot|-| |
||< \2/ otherwise | ||< \2/ otherwise |
|||------------ otherwise | |||----------- otherwise |
||| 2/a\ | ||| 2/a\ |
|||1 + cot |-| | |||1 + cot |-| |
\\\ \2/ / \\\ \2/ / ( − 2 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise otherwise ) ) + ( 10 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cot 2 ( a 2 ) − 1 cot 2 ( a 2 ) + 1 otherwise otherwise ) ) + 10 ( { 0 for im ( a ) = 0 ∧ a m o d π = 0 { 0 for im ( a ) = 0 ∧ a m o d π = 0 2 cot ( a 2 ) cot 2 ( a 2 ) + 1 otherwise otherwise ) − ( 5 ( { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ a m o d 2 π = 0 cot 2 ( a 2 ) − 1 cot 2 ( a 2 ) + 1 otherwise otherwise ) ) + 5 \frac{\left(- 2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(10 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + 10}{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{a}{2} \right)}}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) - \left(5 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{a}{2} \right)} - 1}{\cot^{2}{\left(\frac{a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + 5} ⎩ ⎨ ⎧ 0 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise − 5 ⎩ ⎨ ⎧ 1 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 a ) + 1 c o t 2 ( 2 a ) − 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise + 5 − 2 ⎩ ⎨ ⎧ 0 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise + 10 ⎩ ⎨ ⎧ 1 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 a ) + 1 c o t 2 ( 2 a ) − 1 for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ a mod 2 π = 0 otherwise + 10