Тригонометрическая часть
[src] 1 2
- -------- + ------------------
csc(6*a) csc(11*a)*sec(5*a) 2 csc ( 11 a ) sec ( 5 a ) − 1 csc ( 6 a ) \frac{2}{\csc{\left(11 a \right)} \sec{\left(5 a \right)}} - \frac{1}{\csc{\left(6 a \right)}} csc ( 11 a ) sec ( 5 a ) 2 − csc ( 6 a ) 1 // 0 for And(im(a) = 0, 6*a mod pi = 0)\ // 0 for And(im(a) = 0, 11*a mod pi = 0)\
|| | || | // 1 for And(im(a) = 0, 5*a mod 2*pi = 0)\
|| 1 | || 1 | || |
- |<------------- otherwise | + 2*|<-------------- otherwise |*|< 1 |
|| / pi\ | || / pi\ | ||-------- otherwise |
||sec|6*a - --| | ||sec|11*a - --| | \\sec(5*a) /
\\ \ 2 / / \\ \ 2 / / ( − { 0 for im ( a ) = 0 ∧ 6 a m o d π = 0 1 sec ( 6 a − π 2 ) otherwise ) + ( 2 ( { 0 for im ( a ) = 0 ∧ 11 a m o d π = 0 1 sec ( 11 a − π 2 ) otherwise ) ( { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 1 sec ( 5 a ) otherwise ) ) \left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 6 a \bmod \pi = 0 \\\frac{1}{\sec{\left(6 a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 11 a \bmod \pi = 0 \\\frac{1}{\sec{\left(11 a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(5 a \right)}} & \text{otherwise} \end{cases}\right)\right) ( − { 0 s e c ( 6 a − 2 π ) 1 for im ( a ) = 0 ∧ 6 a mod π = 0 otherwise ) + ( 2 ( { 0 s e c ( 11 a − 2 π ) 1 for im ( a ) = 0 ∧ 11 a mod π = 0 otherwise ) ( { 1 s e c ( 5 a ) 1 for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise ) ) / 0 for And(im(a) = 0, 16*a mod pi = 0)
<
\sin(16*a) otherwise { 0 for im ( a ) = 0 ∧ 16 a m o d π = 0 sin ( 16 a ) otherwise \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 16 a \bmod \pi = 0 \\\sin{\left(16 a \right)} & \text{otherwise} \end{cases} { 0 sin ( 16 a ) for im ( a ) = 0 ∧ 16 a mod π = 0 otherwise 1 2
- -------- + -----------------------
csc(6*a) /pi \
csc(11*a)*csc|-- - 5*a|
\2 / 2 csc ( 11 a ) csc ( − 5 a + π 2 ) − 1 csc ( 6 a ) \frac{2}{\csc{\left(11 a \right)} \csc{\left(- 5 a + \frac{\pi}{2} \right)}} - \frac{1}{\csc{\left(6 a \right)}} csc ( 11 a ) csc ( − 5 a + 2 π ) 2 − csc ( 6 a ) 1 2*tan(8*a)
-------------
2
1 + tan (8*a) 2 tan ( 8 a ) tan 2 ( 8 a ) + 1 \frac{2 \tan{\left(8 a \right)}}{\tan^{2}{\left(8 a \right)} + 1} tan 2 ( 8 a ) + 1 2 tan ( 8 a ) // 1 for And(im(a) = 0, 5*a mod 2*pi = 0)\
// 0 for And(im(a) = 0, 6*a mod pi = 0)\ // 0 for And(im(a) = 0, 11*a mod pi = 0)\ || |
|| | || | || 1 |
- |< 1 | + 2*|< 1 |*|<------------- otherwise |
||-------- otherwise | ||--------- otherwise | || /pi \ |
\\csc(6*a) / \\csc(11*a) / ||csc|-- - 5*a| |
\\ \2 / / ( − { 0 for im ( a ) = 0 ∧ 6 a m o d π = 0 1 csc ( 6 a ) otherwise ) + ( 2 ( { 0 for im ( a ) = 0 ∧ 11 a m o d π = 0 1 csc ( 11 a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 1 csc ( − 5 a + π 2 ) otherwise ) ) \left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 6 a \bmod \pi = 0 \\\frac{1}{\csc{\left(6 a \right)}} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 11 a \bmod \pi = 0 \\\frac{1}{\csc{\left(11 a \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- 5 a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) ( − { 0 c s c ( 6 a ) 1 for im ( a ) = 0 ∧ 6 a mod π = 0 otherwise ) + ( 2 ( { 0 c s c ( 11 a ) 1 for im ( a ) = 0 ∧ 11 a mod π = 0 otherwise ) ( { 1 c s c ( − 5 a + 2 π ) 1 for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise ) ) / pi\
cos|16*a - --|
\ 2 / cos ( 16 a − π 2 ) \cos{\left(16 a - \frac{\pi}{2} \right)} cos ( 16 a − 2 π ) // 0 for And(im(a) = 0, 6*a mod pi = 0)\ // 0 for And(im(a) = 0, 11*a mod pi = 0)\
|| | || | // 1 for And(im(a) = 0, 5*a mod 2*pi = 0)\
- |< / pi\ | + 2*|< / pi\ |*|< |
||cos|6*a - --| otherwise | ||cos|11*a - --| otherwise | \\cos(5*a) otherwise /
\\ \ 2 / / \\ \ 2 / / ( − { 0 for im ( a ) = 0 ∧ 6 a m o d π = 0 cos ( 6 a − π 2 ) otherwise ) + ( 2 ( { 0 for im ( a ) = 0 ∧ 11 a m o d π = 0 cos ( 11 a − π 2 ) otherwise ) ( { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 cos ( 5 a ) otherwise ) ) \left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 6 a \bmod \pi = 0 \\\cos{\left(6 a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 11 a \bmod \pi = 0 \\\cos{\left(11 a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\cos{\left(5 a \right)} & \text{otherwise} \end{cases}\right)\right) ( − { 0 cos ( 6 a − 2 π ) for im ( a ) = 0 ∧ 6 a mod π = 0 otherwise ) + ( 2 ( { 0 cos ( 11 a − 2 π ) for im ( a ) = 0 ∧ 11 a mod π = 0 otherwise ) ( { 1 cos ( 5 a ) for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise ) ) // 0 for And(im(a) = 0, 11*a mod pi = 0)\ // 1 for And(im(a) = 0, 5*a mod 2*pi = 0)\
// 0 for And(im(a) = 0, 6*a mod pi = 0)\ || | || |
|| | ||/ 0 for And(im(a) = 0, 11*a mod pi = 0) | ||/ 1 for And(im(a) = 0, 5*a mod 2*pi = 0) |
||/ 0 for And(im(a) = 0, 6*a mod pi = 0) | ||| | ||| |
||| | ||| /11*a\ | ||| 2/5*a\ |
- |<| 2*cot(3*a) | + 2*|<| 2*cot|----| |*|<|-1 + cot |---| |
||<------------- otherwise otherwise | ||< \ 2 / otherwise | ||< \ 2 / otherwise |
||| 2 | |||-------------- otherwise | |||-------------- otherwise |
|||1 + cot (3*a) | ||| 2/11*a\ | ||| 2/5*a\ |
\\\ / |||1 + cot |----| | |||1 + cot |---| |
\\\ \ 2 / / \\\ \ 2 / / ( − { 0 for im ( a ) = 0 ∧ 6 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 6 a m o d π = 0 2 cot ( 3 a ) cot 2 ( 3 a ) + 1 otherwise otherwise ) + ( 2 ( { 0 for im ( a ) = 0 ∧ 11 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 11 a m o d π = 0 2 cot ( 11 a 2 ) cot 2 ( 11 a 2 ) + 1 otherwise otherwise ) ( { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 cot 2 ( 5 a 2 ) − 1 cot 2 ( 5 a 2 ) + 1 otherwise otherwise ) ) \left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 6 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 6 a \bmod \pi = 0 \\\frac{2 \cot{\left(3 a \right)}}{\cot^{2}{\left(3 a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 11 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 11 a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{11 a}{2} \right)}}{\cot^{2}{\left(\frac{11 a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{5 a}{2} \right)} - 1}{\cot^{2}{\left(\frac{5 a}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) − ⎩ ⎨ ⎧ 0 { 0 c o t 2 ( 3 a ) + 1 2 c o t ( 3 a ) for im ( a ) = 0 ∧ 6 a mod π = 0 otherwise for im ( a ) = 0 ∧ 6 a mod π = 0 otherwise + 2 ⎩ ⎨ ⎧ 0 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 11 a ) + 1 2 c o t ( 2 11 a ) for im ( a ) = 0 ∧ 11 a mod π = 0 otherwise for im ( a ) = 0 ∧ 11 a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 ⎩ ⎨ ⎧ 1 c o t 2 ( 2 5 a ) + 1 c o t 2 ( 2 5 a ) − 1 for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise // 0 for And(im(a) = 0, 6*a mod pi = 0)\ // 0 for And(im(a) = 0, 11*a mod pi = 0)\ // 1 for And(im(a) = 0, 5*a mod 2*pi = 0)\
|| | || | || |
- | ( − { 0 for im ( a ) = 0 ∧ 6 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 6 a m o d π = 0 sin ( 6 a ) otherwise otherwise ) + ( 2 ( { 0 for im ( a ) = 0 ∧ 11 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 11 a m o d π = 0 sin ( 11 a ) otherwise otherwise ) ( { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 cos ( 5 a ) otherwise otherwise ) ) \left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 6 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 6 a \bmod \pi = 0 \\\sin{\left(6 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 11 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 11 a \bmod \pi = 0 \\\sin{\left(11 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\cos{\left(5 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) − ⎩ ⎨ ⎧ 0 { 0 sin ( 6 a ) for im ( a ) = 0 ∧ 6 a mod π = 0 otherwise for im ( a ) = 0 ∧ 6 a mod π = 0 otherwise + 2 ⎩ ⎨ ⎧ 0 { 0 sin ( 11 a ) for im ( a ) = 0 ∧ 11 a mod π = 0 otherwise for im ( a ) = 0 ∧ 11 a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 { 1 cos ( 5 a ) for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise / 0 for And(im(a) = 0, 16*a mod pi = 0)
|
| 2*cot(8*a)
<------------- otherwise
| 2
|1 + cot (8*a)
\ { 0 for im ( a ) = 0 ∧ 16 a m o d π = 0 2 cot ( 8 a ) cot 2 ( 8 a ) + 1 otherwise \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 16 a \bmod \pi = 0 \\\frac{2 \cot{\left(8 a \right)}}{\cot^{2}{\left(8 a \right)} + 1} & \text{otherwise} \end{cases} { 0 c o t 2 ( 8 a ) + 1 2 c o t ( 8 a ) for im ( a ) = 0 ∧ 16 a mod π = 0 otherwise /pi \
-sin(6*a) + 2*sin(11*a)*sin|-- + 5*a|
\2 / − sin ( 6 a ) + 2 sin ( 11 a ) sin ( 5 a + π 2 ) - \sin{\left(6 a \right)} + 2 \sin{\left(11 a \right)} \sin{\left(5 a + \frac{\pi}{2} \right)} − sin ( 6 a ) + 2 sin ( 11 a ) sin ( 5 a + 2 π ) 1
--------------
/ pi\
sec|16*a - --|
\ 2 / 1 sec ( 16 a − π 2 ) \frac{1}{\sec{\left(16 a - \frac{\pi}{2} \right)}} sec ( 16 a − 2 π ) 1 sin ( 16 a ) \sin{\left(16 a \right)} sin ( 16 a ) 1 2
- ------------- + -----------------------
/ pi\ / pi\
sec|6*a - --| sec(5*a)*sec|11*a - --|
\ 2 / \ 2 / − 1 sec ( 6 a − π 2 ) + 2 sec ( 5 a ) sec ( 11 a − π 2 ) - \frac{1}{\sec{\left(6 a - \frac{\pi}{2} \right)}} + \frac{2}{\sec{\left(5 a \right)} \sec{\left(11 a - \frac{\pi}{2} \right)}} − sec ( 6 a − 2 π ) 1 + sec ( 5 a ) sec ( 11 a − 2 π ) 2 1 csc ( 16 a ) \frac{1}{\csc{\left(16 a \right)}} csc ( 16 a ) 1 / 2/5*a\\ /11*a\
4*|1 - tan |---||*tan|----|
2*tan(3*a) \ \ 2 // \ 2 /
- ------------- + --------------------------------
2 / 2/5*a\\ / 2/11*a\\
1 + tan (3*a) |1 + tan |---||*|1 + tan |----||
\ \ 2 // \ \ 2 // 4 ⋅ ( 1 − tan 2 ( 5 a 2 ) ) tan ( 11 a 2 ) ( tan 2 ( 5 a 2 ) + 1 ) ( tan 2 ( 11 a 2 ) + 1 ) − 2 tan ( 3 a ) tan 2 ( 3 a ) + 1 \frac{4 \cdot \left(1 - \tan^{2}{\left(\frac{5 a}{2} \right)}\right) \tan{\left(\frac{11 a}{2} \right)}}{\left(\tan^{2}{\left(\frac{5 a}{2} \right)} + 1\right) \left(\tan^{2}{\left(\frac{11 a}{2} \right)} + 1\right)} - \frac{2 \tan{\left(3 a \right)}}{\tan^{2}{\left(3 a \right)} + 1} ( tan 2 ( 2 5 a ) + 1 ) ( tan 2 ( 2 11 a ) + 1 ) 4 ⋅ ( 1 − tan 2 ( 2 5 a ) ) tan ( 2 11 a ) − tan 2 ( 3 a ) + 1 2 tan ( 3 a ) // 0 for And(im(a) = 0, 6*a mod pi = 0)\ // 0 for And(im(a) = 0, 11*a mod pi = 0)\ // 1 for And(im(a) = 0, 5*a mod 2*pi = 0)\
- |< | + 2*|< |*|< |
\\sin(6*a) otherwise / \\sin(11*a) otherwise / \\cos(5*a) otherwise / ( − { 0 for im ( a ) = 0 ∧ 6 a m o d π = 0 sin ( 6 a ) otherwise ) + ( 2 ( { 0 for im ( a ) = 0 ∧ 11 a m o d π = 0 sin ( 11 a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 cos ( 5 a ) otherwise ) ) \left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 6 a \bmod \pi = 0 \\\sin{\left(6 a \right)} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 11 a \bmod \pi = 0 \\\sin{\left(11 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\cos{\left(5 a \right)} & \text{otherwise} \end{cases}\right)\right) ( − { 0 sin ( 6 a ) for im ( a ) = 0 ∧ 6 a mod π = 0 otherwise ) + ( 2 ( { 0 sin ( 11 a ) for im ( a ) = 0 ∧ 11 a mod π = 0 otherwise ) ( { 1 cos ( 5 a ) for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise ) ) 2 cos 2 ( 8 a ) tan ( 8 a ) 2 \cos^{2}{\left(8 a \right)} \tan{\left(8 a \right)} 2 cos 2 ( 8 a ) tan ( 8 a ) / pi\ / pi\
- cos|6*a - --| + 2*cos(5*a)*cos|11*a - --|
\ 2 / \ 2 / 2 cos ( 5 a ) cos ( 11 a − π 2 ) − cos ( 6 a − π 2 ) 2 \cos{\left(5 a \right)} \cos{\left(11 a - \frac{\pi}{2} \right)} - \cos{\left(6 a - \frac{\pi}{2} \right)} 2 cos ( 5 a ) cos ( 11 a − 2 π ) − cos ( 6 a − 2 π ) // 1 for And(im(a) = 0, 5*a mod 2*pi = 0)\
// 0 for And(im(a) = 0, 6*a mod pi = 0)\ // 0 for And(im(a) = 0, 11*a mod pi = 0)\ || |
- |< | + 2*|< |*|< /pi \ |
\\sin(6*a) otherwise / \\sin(11*a) otherwise / ||sin|-- + 5*a| otherwise |
\\ \2 / / ( − { 0 for im ( a ) = 0 ∧ 6 a m o d π = 0 sin ( 6 a ) otherwise ) + ( 2 ( { 0 for im ( a ) = 0 ∧ 11 a m o d π = 0 sin ( 11 a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 sin ( 5 a + π 2 ) otherwise ) ) \left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 6 a \bmod \pi = 0 \\\sin{\left(6 a \right)} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 11 a \bmod \pi = 0 \\\sin{\left(11 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\sin{\left(5 a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) ( − { 0 sin ( 6 a ) for im ( a ) = 0 ∧ 6 a mod π = 0 otherwise ) + ( 2 ( { 0 sin ( 11 a ) for im ( a ) = 0 ∧ 11 a mod π = 0 otherwise ) ( { 1 sin ( 5 a + 2 π ) for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise ) ) // 0 for And(im(a) = 0, 11*a mod pi = 0)\ // 1 for And(im(a) = 0, 5*a mod 2*pi = 0)\
// 0 for And(im(a) = 0, 6*a mod pi = 0)\ || | || |
|| | || /11*a\ | || 2/5*a\ |
|| 2*tan(3*a) | || 2*tan|----| | ||1 - tan |---| |
- |<------------- otherwise | + 2*|< \ 2 / |*|< \ 2 / |
|| 2 | ||-------------- otherwise | ||------------- otherwise |
||1 + tan (3*a) | || 2/11*a\ | || 2/5*a\ |
\\ / ||1 + tan |----| | ||1 + tan |---| |
\\ \ 2 / / \\ \ 2 / / ( − { 0 for im ( a ) = 0 ∧ 6 a m o d π = 0 2 tan ( 3 a ) tan 2 ( 3 a ) + 1 otherwise ) + ( 2 ( { 0 for im ( a ) = 0 ∧ 11 a m o d π = 0 2 tan ( 11 a 2 ) tan 2 ( 11 a 2 ) + 1 otherwise ) ( { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 1 − tan 2 ( 5 a 2 ) tan 2 ( 5 a 2 ) + 1 otherwise ) ) \left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 6 a \bmod \pi = 0 \\\frac{2 \tan{\left(3 a \right)}}{\tan^{2}{\left(3 a \right)} + 1} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 11 a \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{11 a}{2} \right)}}{\tan^{2}{\left(\frac{11 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{5 a}{2} \right)}}{\tan^{2}{\left(\frac{5 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) ( − { 0 t a n 2 ( 3 a ) + 1 2 t a n ( 3 a ) for im ( a ) = 0 ∧ 6 a mod π = 0 otherwise ) + 2 ⎩ ⎨ ⎧ 0 t a n 2 ( 2 11 a ) + 1 2 t a n ( 2 11 a ) for im ( a ) = 0 ∧ 11 a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 t a n 2 ( 2 5 a ) + 1 1 − t a n 2 ( 2 5 a ) for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise // 0 for And(im(a) = 0, 11*a mod pi = 0)\ // 1 for And(im(a) = 0, 5*a mod 2*pi = 0)\
// 0 for And(im(a) = 0, 6*a mod pi = 0)\ || | || |
|| | || /11*a\ | || 2/5*a\ |
|| 2*cot(3*a) | || 2*cot|----| | ||-1 + cot |---| |
- |<------------- otherwise | + 2*|< \ 2 / |*|< \ 2 / |
|| 2 | ||-------------- otherwise | ||-------------- otherwise |
||1 + cot (3*a) | || 2/11*a\ | || 2/5*a\ |
\\ / ||1 + cot |----| | ||1 + cot |---| |
\\ \ 2 / / \\ \ 2 / / ( − { 0 for im ( a ) = 0 ∧ 6 a m o d π = 0 2 cot ( 3 a ) cot 2 ( 3 a ) + 1 otherwise ) + ( 2 ( { 0 for im ( a ) = 0 ∧ 11 a m o d π = 0 2 cot ( 11 a 2 ) cot 2 ( 11 a 2 ) + 1 otherwise ) ( { 1 for im ( a ) = 0 ∧ 5 a m o d 2 π = 0 cot 2 ( 5 a 2 ) − 1 cot 2 ( 5 a 2 ) + 1 otherwise ) ) \left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 6 a \bmod \pi = 0 \\\frac{2 \cot{\left(3 a \right)}}{\cot^{2}{\left(3 a \right)} + 1} & \text{otherwise} \end{cases}\right) + \left(2 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 11 a \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{11 a}{2} \right)}}{\cot^{2}{\left(\frac{11 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 5 a \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{5 a}{2} \right)} - 1}{\cot^{2}{\left(\frac{5 a}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) ( − { 0 c o t 2 ( 3 a ) + 1 2 c o t ( 3 a ) for im ( a ) = 0 ∧ 6 a mod π = 0 otherwise ) + 2 ⎩ ⎨ ⎧ 0 c o t 2 ( 2 11 a ) + 1 2 c o t ( 2 11 a ) for im ( a ) = 0 ∧ 11 a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 c o t 2 ( 2 5 a ) + 1 c o t 2 ( 2 5 a ) − 1 for im ( a ) = 0 ∧ 5 a mod 2 π = 0 otherwise